K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2018

 \(2005a=\frac{2005^{2006}+2005}{2005^{2006}+1}=\frac{2005^{2006}+1}{2005^{2006}+1}+\frac{2004}{2005^{2006}+1}=1+\frac{2004}{2005^{2006}+1}\)

\(2005b=\frac{2005^{2005}+2005}{2005^{2005}+1}=\frac{2005^{2005}+1}{2005^{2005}+1}+\frac{2004}{2005^{2005}+1}=1+\frac{2004}{2005^{2005}+1}\)

Ta thấy :\(2005^{2006}+1>2005^{2005}+1\)

\(\Rightarrow\frac{2004}{2005^{2006}+1}< \frac{2004}{2005^{2005}+1}\)

\(\Rightarrow1+\frac{2004}{2005^{2006}+1}< 1+\frac{2004}{2005^{2005}+1}\)

\(\Rightarrow2005a< 2005b\)

\(\Rightarrow a< b\)

16 tháng 1 2018

\(A< \frac{2005^{2005}+1+2004}{2005^{2006}+1+2004}=\frac{2005^{2005}+2005}{2005^{2006}+2005}=\frac{2005\left(2005^{2004}+1\right)}{2005\left(2005^{2005}+1\right)}=\frac{2005^{2004}+1}{2005^{2005}+1}=B\)

Vậy A < B

27 tháng 3 2018

Ta có : 

\(A=3^{2008}-3^{2007}+3^{2006}-...+3^2-3+1\)

\(3A=3^{2009}-3^{2008}+3^{2007}-...+3^3-3^2+3\)

\(3A+A=\left(3^{2009}-3^{2008}+3^{2007}-...+3^3-3^2+3\right)+\left(3^{2008}-3^{2007}+3^{2006}-...+3^2-3+1\right)\)

\(4A=3^{2009}+1\)

\(A=\frac{3^{2009}+1}{4}>\frac{1}{4}\)

Vậy \(A>\frac{1}{4}\)

Chúc bạn học tốt ~ 

27 tháng 3 2018

Ta có \(3A=3^{2009}-3^{2008}+...-3^2+3\)

           \(A=3^{2008}-3^{2007}+...-3+1\)

=> \(4A=3A+A=3^{2009}+1\)

=> \(A=\frac{3^{2009}+1}{4}\)\(\frac{3^{2009}}{4}+\frac{1}{4}>\frac{1}{4}\)

23 tháng 8 2017

dat \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=k\)

suy ra \(\hept{\begin{cases}a=2003k\\b=2004k\\c=2005k\end{cases}}\)

4.(a-b).(b-c)=4.(2003k-2004k).(2004k-2005k)=4k^2

(c-a)^2=(2005k-2003k)^2=4k^2

xong roi do cho minh dung nhe!

23 tháng 9 2017

 Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=\frac{a-b}{2003-2004}=\frac{b-c}{2004-2005}=\frac{c-a}{2005-2003}\)

\(\Rightarrow-\left(a-b\right)=-\left(b-c\right)=\frac{c-a}{2}\)

Thay vào \(4\left(a-b\right)\left(b-c\right)\), ta được :

\(4\left(a-b\right)\left(b-c\right)=4\left(-\frac{c-a}{2}\right)\left(-\frac{c-a}{2}\right)\)

\(\Rightarrow4\left(a-b\right)\left(b-c\right)=4\left[\frac{\left(c-a\right)^2}{4}\right]\)

\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)( điều phải chứng minh ) 

2 tháng 9 2020

Các bạn giúp mk với, còn nốt mấy câu so sánh này nữa thôi, ai nhanh mk k cho

2 tháng 9 2020

a) 

\(\frac{-17}{243}< 0\) 

\(\frac{1}{1965}>0\)    

\(\frac{-17}{243}< \frac{1}{1965}\)  

b, 

\(\frac{23}{-15}< 0\)    

\(\frac{-17}{-49}>0\)   

\(\frac{23}{-15}< \frac{-17}{-49}\)     

c, 

\(\frac{-2004}{2005}=-1+\frac{1}{2005}\)   

\(\frac{-2005}{2006}=-1+\frac{1}{2006}\)   

Vì \(\frac{1}{2005}>\frac{1}{2006}\)  

Nên \(-1+\frac{1}{2005}>-1+\frac{1}{2006}\)   

Vậy \(\frac{-2004}{2005}>\frac{-2005}{2006}\)

12 tháng 4 2017

câu d thì dễ

12 tháng 4 2017

Thế giúp vs bn ơi