Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đơn giản biểu thức ta được:
\(B=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)\)
\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\frac{\left(x-1\right)\left(y-1\right)}{xy}\)
\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\frac{\left(-x\right).\left(-y\right)}{xy}=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)
\(=1+\frac{1}{xy}+\left(\frac{1}{x}+\frac{1}{y}\right)=1+\frac{1}{xy}+\frac{x+y}{xy}\)
\(=1+\frac{1}{xy}+\frac{1}{xy}=1+\frac{2}{xy}\)
Ta bắt đầu tìm \(MIN:\)
Áp dụng BĐT \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(\Rightarrow P\ge1+2\div\frac{1}{4}=9\)
Dấu "=" xảy ra \(\Leftrightarrow\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)=9\Leftrightarrow x=y=\frac{1}{2}\)
Vậy \(MIN_B=9\Leftrightarrow x=y=\frac{1}{2}\)
Tìm \(MAX\) cho bạn luôn:
Ta đặt: \(x=\sin^2\alpha;y=\cos^2\alpha\left(ĐK:a\ne\frac{\pi}{4}+k\pi\right)\)
Ta có: \(B=\left(1-\frac{1}{\sin^4\alpha}\right)\left(1-\frac{1}{\cos^4\alpha}\right)\)
\(=\frac{\left(\sin^2\alpha-1\right)\left(\sin^2\alpha+1\right)\left(\cos^2\alpha-1\right)\left(\cos^2\alpha+1\right)}{\sin^4\alpha.\cos^4\alpha}\)
\(=\frac{\left(\sin^2\alpha.\cos^2\alpha\right)\left(\sin^2\alpha+1\right)\left(\cos^2\alpha+1\right)}{\sin^4\alpha.\cos^4a}\)
\(=\frac{\sin^2\alpha.\cos^2\alpha+2}{\sin^2\alpha.\cos^2\alpha}=1+\frac{2}{\sin^2\alpha.\cos^2\alpha}=1+\frac{8}{\sin^22\alpha}\)
Để \(B_{max}\Leftrightarrow\sin^22a\) nhỏ nhất \(\Rightarrow\cos^22\alpha\) tiến lên 1
\(\Rightarrow\alpha\) tiến đến 0 hoặc \(\pi\Rightarrow x\) hoặc \(y\) tiến đến 0
Vậy không tìm được \(B_{max}\)
Nhân cả 2 vế với a+b+c
Chứng minh \(\frac{a}{b}+\frac{b}{a}\ge2\) tương tự với \(\frac{b}{c}+\frac{c}{b};\frac{c}{a}+\frac{a}{c}\)
\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\Leftrightarrow\frac{a^2-2ab+b^2}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)luôn đúng do a;b>0
dễ rồi nhé
b) \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
\(P=\left(\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(P=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
Áp dụng bđt Cauchy Schwarz dạng Engel (mình nói bđt như vậy,chỗ này bạn cứ nói theo cái bđt đề bài cho đi) ta được:
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+1+y+1+z+1}=\frac{9}{4}\)
=>\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{4}=\frac{3}{4}\)
=>Pmax=3/4 <=> x=y=z=1/3
\(\frac{x^2+y^2}{xy}=\frac{10}{3}\Leftrightarrow3x^2+3y^2-10xy=0\)
\(\Leftrightarrow\left(3x-y\right)\left(x-3y\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\frac{y}{3}\\x=3y\left(l\right)\end{matrix}\right.\) \(\Rightarrow\frac{y}{x}=3\)
\(M=\frac{x-y}{x+y}=\frac{1-\frac{y}{x}}{1+\frac{y}{x}}=\frac{1-3}{1+3}=-\frac{1}{2}\)
b/ \(A=5-\frac{1}{x}+\frac{1}{x^2}=\left(\frac{1}{x^2}-\frac{1}{x}+\frac{1}{4}\right)+\frac{19}{4}=\left(\frac{1}{x}-\frac{1}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\)
Dấu "=" xảy ra khi \(\frac{1}{x}=\frac{1}{2}\Leftrightarrow x=2\)
Bài 3:
a) Ta có: \(x^2+3x+3\)
\(=x^2+2\cdot x\cdot\frac{3}{2}+\frac{9}{4}+\frac{3}{4}\)
\(=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\)
Ta có: \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(\left(x+\frac{3}{2}\right)^2=0\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=\frac{-3}{2}\)
Vậy: Giá trị nhỏ nhất của biểu thức \(P=x^2+3x+3\) là \(\frac{3}{4}\) khi \(x=\frac{-3}{2}\)
b) Ta có: \(Q=x^2+2y^2+2xy-2y\)
\(=x^2+2xy+y^2+y^2-2y+1-1\)
\(=\left(x+y\right)^2+\left(y-1\right)^2-1\)
Ta có: \(\left(x+y\right)^2\ge0\forall x,y\)
\(\left(y-1\right)^2\ge0\forall y\)
Do đó: \(\left(x+y\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(Q=x^2+2y^2+2xy-2y\) là -1 khi x=-1 và y=1
a ) Đặt A = \(\frac{-a+b+c}{2a}+\frac{a-b+c}{2b}+\frac{a+b-c}{2c}=\frac{1}{2}\left(-1+\frac{b}{a}+\frac{c}{a}+\frac{a}{b}-1+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}-1\right)\)
\(=\frac{1}{2}\left(\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}+\frac{c}{a}+\frac{a}{c}-3\right)\)
Do a ; b ; c > 0 , áp dụng BĐT Cô - si cho các cặp số dương , ta có :
\(A\ge\frac{1}{2}\left[2\sqrt{\frac{a}{b}.\frac{b}{a}}+2\sqrt{\frac{b}{c}.\frac{c}{b}}+2\sqrt{\frac{a}{c}.\frac{c}{a}}-3\right]=\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)
b ) \(P=\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=\frac{x^2}{xy+xz}+\frac{y^2}{xy+yz}+\frac{z^2}{xz+yz}\ge\frac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)}\ge\frac{3\left(xy+yz+xz\right)}{2\left(xy+yz+xz\right)}=\frac{3}{2}\)
( áp dụng BĐT Cauchy - Schwarz )
Dấu " = " xảy ra \(\Leftrightarrow x=y=z\)
P=2/(a^2+b^2)+2/2ab+68/2ab. ap dung bdt 1/a+1/b>=4/a+b. ta co 2/(a^2+b^2)+2/2ab>=