K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2018

a) Ta có \(a\left(b+1\right)+b\left(a+1\right)=\left(a+1\right)\left(b+1\right)\Rightarrow2ab+a+b=a+b+ab+1\)

=> ab=1

b) Ta có \(2\left(a+1\right)\left(b+1\right)=\left(a+b\right)\left(a+b+2\right)\Leftrightarrow2ab+2a+2b+2=a^2+ab+2a+b^2+ab+2b\)

=> a^2+b^2=2

^_^

27 tháng 6 2018

vũ tiền châu bạn làm rõ đc ko ạk

17 tháng 8 2015

 

a,VT= (a+b).(a2-a.b+b2) +(a-b).(a2+a.b+b2

=a3+b3+a3-b3

=2a3

=VP

=> điều phải chứng minh

 

b,VP= (a+b).((a-b)2+a.b)

=(a+b)(a2-2a.b+b2+a.b)

=(a+b)(a2-a.b+b2)

=a3+b3

=>điều phải chứng minh

 

  

17 tháng 8 2015

a/ ta có vế trái = a+ b+ a- b3 
                     = 2a3 = vế phải
b/ ta có vế phải = (a+b).(a2 - 2.a.b + b2 + a.b)
                       = (a+b).(a2 - ab + b2
                       = a3 + b= vế trái
c/ ta có vế phải = (a2c2 + 2acbd + b2d2) + (a2d2 - 2adbc + b2c2)
                       = a2c2 + 2abcd +b2d2 + a2d2 - 2abcd + b2c2
                            
  = a2c2 + b2d2 + a2d2 + b2c2
                       = a2.(c2 + d2) + b2.(c2+ d2)
                       = (a2 + b2) . (c2 + d2) = vế trái
 

22 tháng 9 2020

Bài 1: 

Đặt \(\hept{\begin{cases}a=5k+1\\b=5k+2\end{cases}}\left(k\inℕ\right)\)

Ta có: \(a\cdot b=\left(5k+1\right)\left(5k+2\right)\)

\(=25k^2+15k+2\)

\(=5\left(5k^2+3k\right)+2\)

Mà \(5\left(5k^2+3k\right)⋮5\)

=> \(5\left(5k^2+3k\right)+2\) chia 5 dư 2

=> a.b chia 5 dư 2

22 tháng 9 2020

Bài 2:

a) \(a\left(b-c\right)-b\left(a+c\right)+c\left(a-b\right)\) (sửa đề rồi đấy)

\(=ab-ca-ab-bc+ca-bc\)

\(=-2bc\)

b) \(a\left(1-b\right)+a\left(a^2-1\right)\)

\(=a-ab+a^3-a\)

\(=a^3-ab\)

\(=a\left(a^2-b\right)\)

c) \(a\left(b-x\right)+x\left(a+b\right)\)

\(=ab-xa+xa+xb\)

\(=ab+xb\)

\(=b\left(a+x\right)\)

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).Bài 2: Cho các số thực dương a,b,c,d. Chứng minh...
Đọc tiếp

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!

Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).

Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:

\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).

Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).

Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng: 

a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).

b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).

c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).

Bài 5: Cho a,b,c >0. Chứng minh rằng:

\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).

8
21 tháng 10 2019

1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)

\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\)  (1) 

áp dụng (x2 +y2 +z2)(m2+n2+p2\(\ge\left(xm+yn+zp\right)^2\)

(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\)   <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\)  ( vậy (1) đúng)

dấu '=' khi a=b=c

21 tháng 10 2019

4b, \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=1-\frac{ab^2}{a^2+b^2}+1-\frac{bc^2}{b^2+c^2}+1-\frac{ca^2}{a^2+c^2}\)

\(\ge3-\frac{ab^2}{2ab}-\frac{bc^2}{2bc}-\frac{ca^2}{2ac}=3-\frac{\left(a+b+c\right)}{2}=\frac{3}{2}\)

16 tháng 2 2021

1) Ta có a2 + b2 + c2 = ab + bc + ca

=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca

=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0

=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (a2 - 2ac + c2) = 0

=> (a - b)2 + (b - c)2 + (a - c)2 = 0

=> \(\hept{\begin{cases}a-b=0\\b-c=0\\a-c=0\end{cases}}\Rightarrow\hept{\begin{cases}a=b\\b=c\\a=c\end{cases}}\Rightarrow a=b=c\left(\text{đpcm}\right)\)

16 tháng 2 2021

a^2 + b^2 + c^2 = ab + bc + ca

<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2ac - 2bc = 0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 = 0

<=> a-b = 0 và b-c=0 và c-a=0

<=> a=b=c

a^2/b+c + b^2/a+c + c^2=a+b

= a(a/b+c) + b(b/a+c) + c(c/a+b)

= a(a/b+c + 1 - 1) + b(b/a+c + 1 - 1) + c(c/a+b + 1 - 1)

= a(a+b+c/b+c) - a + b(a+b+c/a+c) - b + c(a+b+c/a+b) - c

= (a+b+c)(a/b+c + b/a+c + c/a+b) - (A+b+c)

mà a/b+c + b/a+c + c/a+b = 1

= a+b+c - (a+b+c)

= 0

13 tháng 9 2015

ta có :a)     (a-b)2+4ab=a2-2ab+b2+4ab=a2+2ab+b2=(a+b)2                                                                                                                      b)      (a+b)2-4ab=a2+2ab+b2-4ab=a2-2ab+b2=(a-b)2                                                                                Áp dụng:  (a-b)2=(a+b)2-4ab=72-4.12=1               (a+b)2=(a-b)2+4ab=202+4.3=412

13 tháng 9 2015

GG

10 tháng 8 2016

a)a2+b2+c2+3=2(a+b+c)

=>a2+b2+c2+1+1+1-2a-2b-2c=0

=>(a2-2a+1)+(b2-2b+1)+(c2-2c+1)=0

=>(a-1)2+(b-1)2+(c-1)2=0

=>a-1=b-1=c-1=0 <=>a=b=c=1 

-->Đpcm

b)(a+b+c)2=3(ab+ac+bc)

=>a2+b2+c2+2ab+2ac+2bc -3ab-3ac-3bc=0 

=>a2+b2+c2-ab-ac-bc=0

=>2a2+2b2+2c2-2ab-2ac-2bc=0 

=>(a2- 2ab+b2)+(b2-2bc+c2) + (c2-2ca+a2) = 0

=>(a-b)2+(b-c)2+(c-a)2=0 

Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0

=>a-b hoặc b=c hoặc a=c

=>a=b=c 

-->Đpcm

c)a2+b2+c2=ab+bc+ca

=>2(a2+b2+c2)=2(ab+bc+ca)

=>2a2+2b2+c2=2ab+2bc+2ca

=>2a2+2b2+c2-2ab-2bc-2ca=0

=>a2+a2+b2+b2+c2+c2-2ab-2bc-2ca=0

=>(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ca+c2)=0

=>(a-b)2+(b-c)2+(a-c)2=0

Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0

=>a-b hoặc b=c hoặc a=c

=>a=b=c 

-->Đpcm