Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H M N I O
a) Áp dụng ĐL đường phân giác trong tam giác, ta có:
\(\frac{AM}{HM}=\frac{AC}{HC}\); \(\frac{BN}{HN}=\frac{AB}{AH}\).
Dễ thấy \(\Delta\)AHB ~ \(\Delta\)CHA (g.g): \(\frac{AC}{AB}=\frac{HC}{AH}\Rightarrow\frac{AC}{HC}=\frac{AB}{AH}\)
Do đó: \(\frac{AM}{HM}=\frac{BN}{HN}\)=> MN // AB (ĐL Thales đảo) (đpcm).
b) Áp dụng hệ quả ĐL Thales: \(\frac{MO}{MI}=\frac{AO}{AN}\)(Do NI//AM); \(\frac{MO}{MB}=\frac{NO}{AN}\)
\(\Rightarrow\frac{MO}{MI}+\frac{MO}{MB}=\frac{AO+NO}{AN}=\frac{AN}{AN}=1\Leftrightarrow\frac{1}{MI}+\frac{1}{MB}=\frac{1}{MO}\)(đpcm).
A B D E C H
a) \(\Delta ABH,\Delta CBA\)có \(\widehat{ABC}\)chung ;\(\widehat{AHB}=\widehat{CAB}=90^0\)nên \(\Delta ABH~\Delta CBA\left(g-g\right)\)
b) Từ câu a,ta có \(\frac{BA}{BC}=\frac{BH}{BA}\)mà \(\frac{BA}{BC}=\frac{EA}{EC}\)(tính chất đường phân giác BE của \(\Delta ABC\))\(\Rightarrow\frac{EA}{EC}=\frac{BH}{AB}\)
c) Ta có : \(\frac{BA}{BC}=\frac{BH}{BA}\Rightarrow BH=\frac{BA^2}{BC}=\frac{25}{3}\)(cm)
\(\Delta AHB\)vuông tại H có \(AH=\sqrt{AB^2-BH^2}=\sqrt{100-\frac{625}{9}}=\frac{5\sqrt{11}}{3}\)(cm) (định lí Pi-ta-go)
Ta có : \(\frac{AD}{DH}=\frac{AB}{BH}\)(tính chất đường phân giác BD của \(\Delta ABH\))
\(\Rightarrow\frac{AD}{10}=\frac{DH}{\frac{25}{3}}=\frac{AD+DH}{10+\frac{25}{3}}=\frac{5\sqrt{11}}{3}:\frac{55}{3}=\frac{1}{\sqrt{11}}\)(cm) (tính chất dãy tỉ số bằng nhau)
\(\Rightarrow AD=\frac{10}{\sqrt{11}}\left(cm\right);DH=\frac{25}{3\sqrt{11}}\left(cm\right)\)
Ái chà thời này toán học cao siêu quá còn có trường hợp bằng nhau của tam giác là góc góc :v
A C B H N M