K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2017

:a) Xét tam giác ABC có BC2=AB2+AC2 ( Định lý Py-ta-go)

Thay số:BC2=6 2+8 2 BC2=36+64=100 =>BC=10(cm)

b) Vì BI là phân giác => góc ABI= góc HBI= góc ABC / 2

Xét tam giác ABI vuông tại A và tam giác HBI vuông tại H có:

Bi chung, góc ABI= góc HBI ( cmt) => tam giác ABI= tam giác HBI (cạnh huyền - góc nhọn)

28 tháng 3 2021

e) \(AH\perp BC\)(giả thiết).

\(\Rightarrow\Delta HAB\)vuông tại H.

\(\Rightarrow S_{HAB}=\frac{AH.BH}{2}=4,8.\frac{30}{14}=\frac{144}{14}=\frac{72}{7}\left(cm^2\right)\)

Xét \(\Delta ABC\)có phân giác BD (giả thiết).

\(\Rightarrow\frac{AD}{CD}=\frac{AB}{BC}\)(tính chất).

\(\Rightarrow\frac{AD}{CD+AD}=\frac{AB}{BC+AB}\)(tính chất của tỉ lệ thức).

\(\Rightarrow\frac{AD}{AC}=\frac{AB}{BC+AB}\)

\(\Rightarrow\frac{AD}{8}=\frac{6}{10+6}=\frac{6}{16}=\frac{3}{8}\)(thay số).

\(\Rightarrow AD=\frac{3}{8}.8=3\left(cm\right)\)

Vì \(\Delta ABC\)vuông tại A (giả thiết).

\(\Rightarrow\widehat{CAB}=90^0\Rightarrow\widehat{DAB}=90^0\)

\(\Rightarrow\Delta ADB\)vuông tại A.

\(\Rightarrow S_{ADB}=\frac{AD.AB}{2}=\frac{3.6}{2}=9\left(cm^2\right)\)

Ta có: \(S_{ABC}=\frac{AB.AC}{2}\)(theo câu a))

\(\Rightarrow S_{ABC}=\frac{6.8}{2}=\frac{48}{2}=24\left(cm^2\right)\)

Lại có: \(S_{ABD}+S_{BCD}=S_{ABC}\)

\(\Rightarrow9+S_{BCD}=24\)(thay số).

\(\Rightarrow S_{BCD}=24-9=15\left(cm^2\right)\)

Vậy \(S_{HAB}=\frac{72}{7}cm^2;S_{BCD}=15cm^2\)

28 tháng 3 2021

A B C H E D I

a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

b: ΔACB vuông tại A có AH là đường cao

nên AB^2=BH*BC

2 tháng 5 2019

a) áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được :

    \(AB^2+AC^2=BC^2\)

   \(9^2+AC^2=15^2\)

    \(81+AC^2=225\)

               \(AC^2=144\)

               \(AC=12\)

Ta có: \(AD+DC=AC\)( hình vẽ )

           \(4,5+DC=12\)

                         \(DC=7,5\)

2 tháng 5 2019

hình tự vẽ đi

d) Xét \(\Delta BAI\)và \(\Delta BDA\)có :

\(\widehat{ABD}\)( chung ) ; \(\widehat{AIB}=\widehat{BAD}=90^o\)

\(\Rightarrow\Delta ABI\approx\Delta DBA\left(g.g\right)\)

\(\Rightarrow\frac{AB}{BI}=\frac{BD}{AB}\)\(\Rightarrow BI.BD=AB^2=81\)

Mà BH.BC = AB2 = 81 ( câu c )

\(\Rightarrow\)BI.BD = BH.BC

\(\Rightarrow\)\(\frac{BH}{BI}=\frac{BD}{BC}\)

Xét \(\Delta BHI\)và \(\Delta BDC\)có :

\(\frac{BH}{BI}=\frac{BD}{BC}\)\(\widehat{DBC}\)( chung )

\(\Rightarrow\Delta BHI\approx\Delta BDC\left(c.g.c\right)\)

\(\Rightarrow\widehat{BIH}=\widehat{BCD}\)hay \(\widehat{BIH}=\widehat{ACB}\)

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy:BC=10cm

4 tháng 5 2021

cau co cau tra loi chx 

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

b) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{HBA}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)