Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e) \(AH\perp BC\)(giả thiết).
\(\Rightarrow\Delta HAB\)vuông tại H.
\(\Rightarrow S_{HAB}=\frac{AH.BH}{2}=4,8.\frac{30}{14}=\frac{144}{14}=\frac{72}{7}\left(cm^2\right)\)
Xét \(\Delta ABC\)có phân giác BD (giả thiết).
\(\Rightarrow\frac{AD}{CD}=\frac{AB}{BC}\)(tính chất).
\(\Rightarrow\frac{AD}{CD+AD}=\frac{AB}{BC+AB}\)(tính chất của tỉ lệ thức).
\(\Rightarrow\frac{AD}{AC}=\frac{AB}{BC+AB}\)
\(\Rightarrow\frac{AD}{8}=\frac{6}{10+6}=\frac{6}{16}=\frac{3}{8}\)(thay số).
\(\Rightarrow AD=\frac{3}{8}.8=3\left(cm\right)\)
Vì \(\Delta ABC\)vuông tại A (giả thiết).
\(\Rightarrow\widehat{CAB}=90^0\Rightarrow\widehat{DAB}=90^0\)
\(\Rightarrow\Delta ADB\)vuông tại A.
\(\Rightarrow S_{ADB}=\frac{AD.AB}{2}=\frac{3.6}{2}=9\left(cm^2\right)\)
Ta có: \(S_{ABC}=\frac{AB.AC}{2}\)(theo câu a))
\(\Rightarrow S_{ABC}=\frac{6.8}{2}=\frac{48}{2}=24\left(cm^2\right)\)
Lại có: \(S_{ABD}+S_{BCD}=S_{ABC}\)
\(\Rightarrow9+S_{BCD}=24\)(thay số).
\(\Rightarrow S_{BCD}=24-9=15\left(cm^2\right)\)
Vậy \(S_{HAB}=\frac{72}{7}cm^2;S_{BCD}=15cm^2\)
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
b: ΔACB vuông tại A có AH là đường cao
nên AB^2=BH*BC
a) áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được :
\(AB^2+AC^2=BC^2\)
\(9^2+AC^2=15^2\)
\(81+AC^2=225\)
\(AC^2=144\)
\(AC=12\)
Ta có: \(AD+DC=AC\)( hình vẽ )
\(4,5+DC=12\)
\(DC=7,5\)
hình tự vẽ đi
d) Xét \(\Delta BAI\)và \(\Delta BDA\)có :
\(\widehat{ABD}\)( chung ) ; \(\widehat{AIB}=\widehat{BAD}=90^o\)
\(\Rightarrow\Delta ABI\approx\Delta DBA\left(g.g\right)\)
\(\Rightarrow\frac{AB}{BI}=\frac{BD}{AB}\)\(\Rightarrow BI.BD=AB^2=81\)
Mà BH.BC = AB2 = 81 ( câu c )
\(\Rightarrow\)BI.BD = BH.BC
\(\Rightarrow\)\(\frac{BH}{BI}=\frac{BD}{BC}\)
Xét \(\Delta BHI\)và \(\Delta BDC\)có :
\(\frac{BH}{BI}=\frac{BD}{BC}\); \(\widehat{DBC}\)( chung )
\(\Rightarrow\Delta BHI\approx\Delta BDC\left(c.g.c\right)\)
\(\Rightarrow\widehat{BIH}=\widehat{BCD}\)hay \(\widehat{BIH}=\widehat{ACB}\)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy:BC=10cm
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
b) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{HBA}\) chung
Do đó: ΔABC\(\sim\)ΔHBA(g-g)
:a) Xét tam giác ABC có BC2=AB2+AC2 ( Định lý Py-ta-go)
Thay số:BC2=6 2+8 2 BC2=36+64=100 =>BC=10(cm)
b) Vì BI là phân giác => góc ABI= góc HBI= góc ABC / 2
Xét tam giác ABI vuông tại A và tam giác HBI vuông tại H có:
Bi chung, góc ABI= góc HBI ( cmt) => tam giác ABI= tam giác HBI (cạnh huyền - góc nhọn)