Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2
Bài làm
a) Xét tam giác ABM và tam giác DCM có:
BM = MC ( Do M là trung điểm BC )
^AMB = ^DMC ( hai góc đối )
MD = MA ( gt )
=> Tam giác ABM = tam giác DCM ( c.g.c )
b) Xét tam giác BHA và tam giác BHE có:
HE = HA ( Do H là trung điểm AE )
^BHA = ^BHE ( = 90o )
BH chung
=> Tam giác BHA = tam giác BHE ( c.g.c )
=> AB = BE
Mà tam giác ABM = tam giác DCM ( cmt )
=> AB = CD
=> BE = CD ( đpcm )
Bài 3
Bài làm
a) Xét tam giác ABD và tam giác ACD có:
AB = AB ( gt )
BD = DC ( Do M là trung điểm BC )
AD chung
=> Tam giác ABD = tam giác ACD ( c.c.c )
b) Xét tam giác BEC và tam giác MEA có:
AE = EC ( Do E kà trung điểm AC )
^BEC = ^MEA ( hai góc đối )
BE = EM ( gt )
=> Tam giác BEC = tam giác MEA ( c.g.c )
=> BC = AM
Mà BD = 1/2 . BC ( Do D là trung điểm BC )
hay BD = 1/2 . AM
Hay AM = 2.BD ( đpcm )
c) Vì tam giác ABD = tam giác ACD ( cmt )
=> ^ADB = ^ADC ( hai góc tương ứng )
Mà ^ADB + ^ADC = 180o ( hai góc kề bù )
=> ^ADB = ^ADC = 180o/2 = 90o
=> AD vuông góc với BC (1)
Vì tam giác BEC = tam giác MEA ( cmt )
=> ^EBC = ^EMA ( hai góc tương ứng )
Mà hai góc này ở vị trí so le trong
=> AM // BC (2)
Từ (1) và (2) => AM vuông góc với AD
=> ^MAD = 90o
# Học tốt #
E B A C M D O
a) Xét tam giác CMA và tam giác BMD có :
\(\hept{\begin{cases}MC=MB\\AM=MD\\\widehat{AMC}=\widehat{BMD}\end{cases}\Rightarrow\Delta CMA=\Delta BMD}\)
=> \(\hept{\begin{cases}AC=BD\\\widehat{BDM}=\widehat{ACM}\end{cases}\Rightarrow BD//AC}\)
=> ACBD là hình bình hành
=> \(\hept{\begin{cases}AB=CD\\AB//CD\end{cases}}\)=> đpcm
b) Xét tam giác ABC và tam giác CDA có :
\(\hept{\begin{cases}AB=CD\\\widehat{CAB}=\widehat{ACD}=90^∗\end{cases}\Rightarrow\Delta ABC=\Delta CDA}\)( Lưu ý : Vì không có dấu kí hiệu " độ " nên em dùng tạm dấu *)
Chung AC
=> AD=BC
=> \(AM=\frac{1}{2}.AD=\frac{1}{2}.BC\)=> đpcm
c) Xét tam giác ABC có :
M là trung điểm BC
A là trung điểm CE
Từ 2 điều trên =>AM là đường trung bình => AM//BE ( đpcm )
e) AM //BE => AD // BE
Tam giác CBE có BA vừa là đường cac ,vừa là trung tuyến => tam giác CBE cân ở B
=> \(\hept{\begin{cases}BC=BE\\AD=BC\end{cases}\Rightarrow AD=EB}\)
Mà AD//BE => ABDE là hình bình hành => AB cắt DE ở trung điểm
=> E,O , D thẳng hàng => đpcm
a) Xét tam giác AMB và tam giác DMC có:
BM = CM (gt)
AM =DM (gt)
\(\widehat{AMB}=\widehat{DMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)
Chúng lại ở vị trí so le trong nên AB //CD.
c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.
Suy ra MA = ME
Lại có MA = MD nên ME = MD.
d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.
Suy ra ED // BC
Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.
Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)
bài 2
a,
ta có AH vuông góc với CB
=> góc AHC = góc AHB = 90 độ
tam giác ABC cân tại A
=> AB = AC và góc ABH = góc ACH
xét 2 tam giác AHB và AHC
có góc AHC = góc AHB = 90 độ (cmt)
AB = AC (cmt)
góc ABH = góc ACH (cmt )
=> tam giác AHB = tam giác AHC ( cạnh huyền góc nhọn )(đpcm)
b,
từ a có tam giác AHB = tam giác AHC (canh huyền góc nhọn )
=> BH = CH ( 2 cạnh tương ứng )
và góc HAB = góc HAC ( 2 góc tương ứng ) (1)
xét hai tam giác BHM và CHN
có BMH = 90độ ( HM vuông góc với AB )
BH = CH ( cmt)
góc ABH = góc ACH (hai góc cạnh đáy của tam giác ABC cân tại A )
=> tam giác BHM = tam giác CHN ( cạnh huyền góc nhọn )
=> CN = BM ( 2 cạnh tương ứng )
mà AB = AC (hai cạnh khác đáy của tam giác cân ABC )
=> AB - BM = AC - CN
=> AM = AN
=> tam giác AMN cân
c, xét 2 tam giác AMO và ANO
có góc HAC = góc HAB (từ 1)
AM = AN (cmt)
AO là cạnh chung
=> tam giác AMO = tam giác ANO (c.g.c)
=> góc AON = góc AOM (2 góc tương ứng )
mà góc AON + góc AOM = 180 độ (2 góc kề bù )
=> góc AON = góc AOM = 90 độ
=> MN vuông góc với AO ( hay AH )
mà BC cũng vuông góc với AH ( gt)
=> MN // BC ( đpcm )
bài 1
a, xét 2 tam giác ABM và ECM
có AM = EM (gt)
góc AMB = góc EMC ( 2 góc đối đỉnh )
BM = CM ( M là trung điểm của BC )
=> tam giác ABM = tam giác ECM ( c.g.c ) (đpcm)
b, từ a có tam giác ABM = tam giác ECM ( c.g.c )
=> góc ABM = góc ECM ( 2 góc tương ứng )
mà hai góc đó nằm ở vị trí so le trong nên AB // CE (đpcm )