K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)Nối F với D : E với D ta có:

Xét tam giác FBC ta có 

D là trung điểm BC(1)

Góc BFC=90 (2)

Từ (1)(2)=>FD là trung tuyến của tam giác FBC

=>BD=CD=DF(*)

Chứng minh tương tự tam giác EBC

=>DE=DC=DB(**)

Từ (*)(**)=>BD=CD=DF=DE=(1/2BC)

=>B;F;E;C thuộc đừng tròn

=>D là tâm của đường tròn

B) Do B;H;E nằm trên cùng 1 đừng thẳng => H ko thuộc đừng tròn 

=>B;H;E;c ko thuộc đừng tròn

1 . Cho hình vuông ABCD. Gọi O là giao điểm của hai đường chéo. Qua điểm C kẻ đường thẳng Cx song song với BD; Cx cắt AB tại E.a) Chứng minh tam giác ACE vuông cânb) Gọi F là điểm đối xứng của O qua AB. Tứ giác AOBF là hình gì? Vì sao?c) Giả sử APCQ là hình thoi có chung đường chéo AC với hình vuông ABCD. Hãy chứng tỏ 4 điểm P, D, B, Q thẳng hàng Bài 2:Đường tròn tâm O và một dây AB của đường...
Đọc tiếp

1 . Cho hình vuông ABCD. Gọi O là giao điểm của hai đường chéo. Qua điểm C kẻ đường thẳng Cx song song với BD; Cx cắt AB tại E.

a) Chứng minh tam giác ACE vuông cân

b) Gọi F là điểm đối xứng của O qua AB. Tứ giác AOBF là hình gì? Vì sao?

c) Giả sử APCQ là hình thoi có chung đường chéo AC với hình vuông ABCD. Hãy chứng tỏ 4 điểm P, D, B, Q thẳng hàng 

Bài 2:Đường tròn tâm O và một dây AB của đường tròn đó. Các tiếp tuyến vẽ từ A và B của đường tròn cắt nhau tại C. D là một điểm trên đường tròn có đường kính OC (D khác A và B). CD cắt cung AB của đường tròn (O) tại E (E nằm giữa C và D). Chứng minh:

a) Góc BED = góc DAE

b) DE2 = DA.DB

Bài 3:Cho (O) dây AB vuông góc dây CD M là trung điểm BC. Chứng minh rằng OM=1/2AD

 

0
4 tháng 1 2018

A B D C M P Q I K R E F

a) Gọi I, K lần lượt là trung điểm của AP và DP. Ta có :

IK song song và bằng 1/2 AD hay bằng 1/2 BC.

KM = DM - DK = DC/2 - DP / 2 = PC/2

Mà \(\widehat{IKM}=\widehat{ADC}=\widehat{BCP}\)

\(\Rightarrow\Delta IKM\sim\Delta BCP\left(c-g-c\right)\Rightarrow\widehat{BPC}=\widehat{IMP}\)

Mà \(\widehat{BPC}=\widehat{ABP}\) (AB // PC) ; \(\widehat{ABP}=\widehat{AQR}\) (Hai góc nội tiếp cùng chắn cung AR)

Do đó \(\widehat{IME}=\widehat{IQE}\Rightarrow\) Tứ giác IMQE nội tiếp.

\(\Rightarrow\widehat{EIQ}=\widehat{EMQ}\)

Mà IE // AF (Đường trung bình) nên \(\widehat{IEQ}=\widehat{FAQ}\)  (Đồng vị) 

\(\Rightarrow\widehat{FAQ}=\widehat{FMQ}\) hay tứ giác AMQF nội tiếp.

Do đó đường tròn ngoại tiếp tam giác AQF đi qua A, M cố định.

Vậy tâm đường tròn thuộc đường trung trực của AM.

b) Ta có \(\widehat{EPR}=\widehat{BPC}=\widehat{ABP}=\widehat{AQE}\) nên \(\Delta EPR\sim\Delta EQP\left(g-g\right)\Rightarrow\frac{EP}{EQ}=\frac{ER}{EP}\Rightarrow EP^2=ER.EQ\)

Vì AE là tiếp tuyến nên \(\widehat{EAR}=\widehat{AQE}\Rightarrow\Delta EAR\sim\Delta EQA\left(g-g\right)\Rightarrow\frac{EA}{EQ}=\frac{ER}{EA}\Rightarrow EA^2=EQ.ER\)

\(\Rightarrow EP^2=EA^2\Rightarrow EP=EA=EF\)

\(\Rightarrow\widehat{FAP}=90^o\Rightarrow\widehat{FMQ}=90^o\) (Hai góc nội tiếp cùng chắn cung FQ)

\(\Rightarrow MQ\perp CD\)

Bài 1: Cho đường tròn (O), đường kính AB, dây CD vuông góc với AB tại điểm H thuộc bán kính OA. Gọi M là điểm thuộc bán kính OB, E và F theo thứ tự là giao điểm của CM và DM với đường tròn (E khác C, F khác D). Chứng minh rằng: a) MC = MD b) ME = MFBài 2: Cho đường tròn (O) đường kính AB. Vẽ các dây BC, BD thuộc hai nửa mặt phẳng đối nhau bờ AB sao cho BD > BC. So sánh độ dài hai dây AD và AC.Bài 3....
Đọc tiếp

Bài 1: Cho đường tròn (O), đường kính AB, dây CD vuông góc với AB tại điểm H thuộc bán kính OA. Gọi M là điểm thuộc bán kính OB, E và F theo thứ tự là giao điểm của CM và DM với đường tròn (E khác C, F khác D). Chứng minh rằng: a) MC = MD b) ME = MF

Bài 2: Cho đường tròn (O) đường kính AB. Vẽ các dây BC, BD thuộc hai nửa mặt phẳng đối nhau bờ AB sao cho BD > BC. So sánh độ dài hai dây AD và AC.

Bài 3. Cho đường tròn (O), hai dây AB và AC vuông góc với nhau có độ dài theo thứ tự bằng 10cm và 24cm. a) Tính khoảng cách từ tâm đến mỗi dây b) chứng minh rằng ba điểm B, O, C thẳng hàng.

Bài 4. Cho đường tròn (O), hai dây AB và CD bằng nhau, các tia AB và CD cắt nhau tại điểm M nằm ngoài đường tròn. Trên tia đối của tia AB lấy điểm E sao cho AE = BM. Trên tia đối của tia CD lấy điểm F sao cho CF = DM. Chứng minh rằng OE = OF.

Bài 5. Cho đường tròn (O), hai dây AB và CD có AB > CD, các tia AB và CD cắt nhau tại điểm M nằm ngoài đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. So sánh các độ dài MH và MK. 

giải giúp mình vs ạ . tạo mình đang cần gấp . cảm ơn nha

 

0
20 tháng 4 2016

 bạn gì đó giúp mình giải bài toán này vs