K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2019

Vì EB= \(\frac{AB}{2}\)

DF= \(\frac{DC}{2}\)

Mà AB=CD (hình bình hành)

=> EB= DF

Tứi giác EBFD có

EB // DF; EB=DF nên là hbh

Do đó: ED// BF

Xét \(\Delta CDM\) có: DF=CF ; FN// DM nên NC= NM (1)

Xét \(\Delta ABN\)   có: AE=BE ; EM// BN nên MN= AM(2)

Từ (1) và (2) suy ra AM=MN=NC

Chúc bạn học tốt

18 tháng 12 2022

a Xét tứ giác DEBF có

BE//DF

BE=FD

Do đó; DEBF là hình bình hành

=>DB cắt EF tại trung điểm của mỗi đường(1)

b: Vì ABCD là hình bình hành

nên AC cắt BD tại trung điểm của mõi đường(2)

Từ (1), (2) suy ra AC,BD,EF đồng quy

=>E,O,F thẳng hàng

15 tháng 8 2016

A B C D E F M N

Xét tam giác ADE và tam giác BCF có AD = BC (ABCD là hình bình hành)

Góc BAD = góc BCD , AE = CF = 1/2AB = 1/2CD 

=> tam giác ADE = tam giác BCF (c.g.c)

=> góc AED = góc CFB . Mà AB // CD => góc CFB = góc ABF

=> góc AED = góc ABF mà hai góc này ở vị trí đồng vị

=> DE // BF

Xét tam giác MCD có NF // MD , DF = FC => NF là đường trung bình tam giác MCD

=> MN = NC (1)

Tương tự , ta cũng có ME là đường trung bình của tam giác ANB

=> AM = MN (2)

Từ (1) và (2) suy ra AM = MN = NC (đpcm)

15 tháng 8 2016

thanks nhiều

 

26 tháng 12 2020
Giúp mình đi mọi người
15 tháng 11 2021

5. Vì tứ giác ABCD là hình bình hành (gt)

=> AD // BC ; AD = BC (tc)

Vì M là trung điểm AD (gt)

     N là trung điểm BC (gt)

     AD = BC (cmt)

=> AM = DM = BN = CN

Vì AD // BC mà M ∈ AD, N ∈ BC

=> MD // BN 

Xét tứ giác MBND có : MD = BN (cmt)

                                     MD // BN (cmt)

=> Tứ giác MBND là hình bình hành (DHNB)

=> BM = DN (tc hình bình hành)

     

15 tháng 11 2021

6. Vì tứ giác ABCD là hình bình hành (gt)

=> AB // CD ; AB = CD (tc)

Vì E là trung điểm AB (gt)

     F là trung điểm CD (gt)

     AB = CD (cmt)

=> AE = BE = DF = DF 

Vì AB // CD mà E ∈ AB, F ∈ CD

=> BE // DF 

Xét tứ giác DEBF có : BE = DF (cmt)

                                     BE // DF (cmt)

=> Tứ giác DEBF là hình bình hành (DHNB)