K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2022

Câu 1:

a: =x^2+6x+9+4

=(x+3)^2+4>0

b: \(=x^2-4x+4+x^2+4xy+4y^2+9=\left(x-2\right)^2+\left(x+2y\right)^2+9>=9\)

Dấu = xảy ra khi x=2 và y=-x/2=-2/2=-1

Bài 1: Xét dấu các biểu thức sau:a) f(x)= 2x2+5x+2         b) f(x)= 4x2-3x-1      c) f(x)= -3x2+5x+1        d) f(x)= 3x2+5x+1             e) f(x)= 3x2-2x+1              f) f(x)= -4x2+12x-9g) f(x)= x2-4x-5             h) f(x)= \(\frac{1}{2}x^2+3x+6\)i) f(x)= -2x2-5x+7           j) f(x)= x2-1Bài 2: Viết PTTQ của các đường thẳng đi qua điểm M và có hệ số góc k:a) M ( -3;1) , k= -2     b) M ( -3;4) , k= 3Bài 3: Viết...
Đọc tiếp

Bài 1: Xét dấu các biểu thức sau:

a) f(x)= 2x2+5x+2         b) f(x)= 4x2-3x-1      c) f(x)= -3x2+5x+1        d) f(x)= 3x2+5x+1             e) f(x)= 3x2-2x+1              f) f(x)= -4x2+12x-9

g) f(x)= x2-4x-5             h) f(x)= \(\frac{1}{2}x^2+3x+6\)

i) f(x)= -2x2-5x+7           j) f(x)= x2-1

Bài 2: Viết PTTQ của các đường thẳng đi qua điểm M và có hệ số góc k:
a) M ( -3;1) , k= -2     b) M ( -3;4) , k= 3
Bài 3: Viết PTTS của các đường thẳng đi qua điểm M và vuông góc với
đường thẳng d:

a) M (2;-3) , d: \(\hept{\begin{cases}x=1-2t\\y=3+4t\end{cases}}\)

b) M (0;-2) , d: 3x+2y+1

Bài 4: Cho tam giác ABC có A(2; 0), B( 2; -3), C( 0; -1)
a) Viết PTTQ các cạnh của tam giác ABC.
b) Viết PTTQ của đường thẳng đi qua điểm A và song song với đường
thẳng BC.
c) Viết PTTS của đường thẳng đi qua điểm B và vuông góc với đường
thẳng AC.
d) Viết PTTS của đường trung tuyến AM.
e) Viết PTTQ của đường cao AH.

giai giup cần gâp

 

                                      

2
4 tháng 5 2020

hello bạn hiến

đừng đăng linh tinh nha bạn

NV
18 tháng 9 2019

a/ \(f\left(-x\right)=\left(-x\right)^2+3\left(-x\right)^4=x^2+3x^4=f\left(x\right)\)

Hàm chẵn

b/ \(f\left(-x\right)=\left(-x\right)^3+3\left(-x\right)=-x^3-3x=-\left(x^3+3x\right)=-f\left(x\right)\)

Hàm lẻ

c/ \(f\left(-x\right)=-2\left(-x\right)^4+\left(-x\right)^2-1=-2x^4+x^2-1=f\left(x\right)\)

Hàm chẵn

d/ \(f\left(1\right)=6\); \(f\left(-1\right)=-2\ne f\left(1\right)\ne-f\left(1\right)\)

Hàm ko chẵn ko lẻ

e/ Tương tự câu trên, hàm ko chẵn ko lẻ

f/ \(f\left(-x\right)=\frac{2\left(-x\right)^2-4}{-x}=\frac{2x^2-4}{-x}=-\left(\frac{2x^2-4}{x}\right)=-f\left(x\right)\)

Hàm lẻ trong miền xác định

15 tháng 12 2022

\(\overrightarrow{BK}=\overrightarrow{BA}+\overrightarrow{AK}=\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{AD}\)

\(=\overrightarrow{BA}+\dfrac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{BD}\right)\)

\(=\dfrac{2}{3}\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{BD}\)

\(=\dfrac{2}{3}\overrightarrow{BA}+\dfrac{2}{9}\overrightarrow{BC}\)

\(=\dfrac{8}{9}\overrightarrow{BA}+\dfrac{2}{9}\overrightarrow{AC}\)

\(\overrightarrow{BE}=\overrightarrow{BA}+\overrightarrow{AE}=\overrightarrow{BA}+\dfrac{1}{4}\overrightarrow{AC}\)

Vì 8/9:1=2/9:1/4

nên B,E,K thẳng hàng

15 tháng 10 2019

a.y= -x2 và y=x -2

Phương trình hoành độ giao điểm của (P) và (d) là:

\(-x^2=x-2\)

\(\Leftrightarrow-x^2+x+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Thay x=2 vào pt 1: y= -x2

\(\Leftrightarrow y=-\left(2\right)^2\)

\(\Leftrightarrow y=-4\)

Thay x=-1 vào pt 2: y=x-2

\(\Leftrightarrow y=-1-2\)

\(\Leftrightarrow y=-3\)

Vậy tọa độ giao điểm của (P) và (d) lần lượt là (2;-4) và (-1;-3)

b.\(y=-\frac{1}{2}x^2-2x-4\)

Phương trình hoành độ giao điểm của (P) và (d) là:

\(-\frac{1}{2}x^2-2x-4=0\)

\(\Leftrightarrow x\left(\frac{1}{2}x-2\right)=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\\frac{1}{2}x-2=4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=12\end{matrix}\right.\)

Thay x=4 vào pt:y=\(-\frac{1}{2}x^2-2x-4\)

\(\Leftrightarrow y=-\frac{1}{2}\times\left(4\right)^2-2\times4-4\)

\(\Leftrightarrow y=-20\)

Thay x=12 vào pt:\(y=-\frac{1}{2}x^2-2x-4\)

\(\Leftrightarrow y=-\frac{1}{2}\times\left(12\right)^2-2\times12-4\)

\(\Leftrightarrow y=-100\)

Vậy tọa độ giao điểm của (P) và (d) lần lượt là (4;-20) và (12;-100)

c.y=x2 +6x +4 và y=-x + 1

Phương trình hoành độ giao điểm của (P) và (d) là:

\(x^2+6x+4=-x+1\)

\(\Leftrightarrow x^2+7x+3=0\)

\(\Leftrightarrow x\left(x-7\right)=-3\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x-7=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)

Thy x=-3 vào pt (1):y=x2 +6x +4

\(\Leftrightarrow y=\left(-3\right)^2+6\times\left(-3\right)+4\)

\(\Leftrightarrow y=-5\)

Thay x=4 vào pt (2):y=-x + 1

\(\Leftrightarrow y=-\left(4\right)+1\)

\(\Leftrightarrow y=-3\)

Vậy tọa độ giao điểm của (P) và (d) lần lượt là (-3;-5) và (4;-3)

15 tháng 8 2021

mình nghĩ pt (P) : y = ax^2 - bx + c chứ ? 

a, (P) đi qua điểm A(0;-1) <=> \(c=-1\)

(P) đi qua điểm B(1;-1) <=> \(a-b+c=-1\)(1) 

(P) đi qua điểm C(-1;1)  <=> \(a+b+c=1\)(2) 

Thay c = -1 vào (1) ; (2) ta được : \(a-b=0;a+b=2\Rightarrow a=1;b=1\)

Vậy pt Parabol có dạng \(x^2-x-1=y\)

15 tháng 8 2021

Bài 1b 

(P) đi qua điểm A(8;0) <=> \(64a-8b+c=0\)

(P) có đỉnh I(6;12) \(\Rightarrow\hept{\begin{cases}-\frac{b}{2a}=6\\36a-6b+c=-12\end{cases}}\Rightarrow a=3;b=-36;c=96\)

Vậy pt Parabol có dạng : \(9x^2+36x+96=y\)

tương tự nhé