Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
LƯU Ý
Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn (như 1+1 = ?). Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.
Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.
bạn ko nên tạo những câu hỏi đó olm sẽ trừ điểm bạn đó và cũng có thể khóa mật mã bạn đó
Bài 1 :
Ta có :
\(A=1+3+5+7+...+n\) ( n lẻ )
Số số hạng :
\(\frac{n-1}{2}+1=\frac{n-1+2}{2}==\frac{n+1}{2}\) ( số hạng )
Suy ra :
\(A=\frac{\left(n+1\right).\frac{n+1}{2}}{2}=\frac{\left(n+1\right)\left(n+1\right)}{2}:2=\frac{\left(n+1\right)^2}{2}.\frac{1}{2}=\frac{\left(n+1\right)^2}{2^2}=\left(\frac{n+1}{2}\right)^2\)
Vậy A là số chính phương
Chúc bạn học tốt ~
Giả sử 2 số trong 3 số không bằng nhau :
a < b (1)
Trong hai lũy thừa bằng nhau thì lũy thừa có cơ số nhỏ hơn sẽ có số mũ lớn hơn và ngược lại
Vì vậy :
Do : ab = bc mà a < b \( \implies\) c < b
Ta có : bc = ca mà c < b \( \implies\) c < a
Ta có : ca = ab mà c < a \( \implies\) a > b (2)
Từ (1) ; (2) \( \implies\) Mâu thuẫn
\( \implies\) a = b = c (đpcm)
a) Gọi 5 số tự nhiên đó là a; a+1; a+2; a+3;a+4
Tổng 5 số đó là a + a+1 + a+2 + a+3 + a+4
= (a+a+a+a+a) + (1+2+3+4)
= 5a + 10
= 5(a+2) chia hết cho 5
Vậy tổng của 5 số tự nhiên chia hết cho 5
Bài 1:
Xét hiệu: 6(x+7y) - 6x+11y = 6x+42y-6x+11y = 31y
Vì 6x+11y chia hết cho 31, 31y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Mà (6;31)=1 => x+7y chia hết cho 31
Bài 3:
a,n2+3n-13 chia hết cho n+3
=>n(n+3)-13 chia hết cho n+3
=>13 chia hết cho n+3
=>n+3 E Ư(13)={1;-1;13;-13}
=>n E {-2;-4;10;-16}
d,n2+3 chia hết cho n-1
=>n2-n+n-1+4 chia hết cho n-1
=>n(n-1)+(n-1)+4 chia hết cho n-1
=>4 chia hết cho n-1
=>n-1 E Ư(4)={1;-1;2;-2;4;-4}
=>n E {2;0;3;-1;5;-3}
a, an+3-an+1=an.a(a2-1)=an(a-1)a(a+1)
Vì (a-1)a(a+1) là tích 3 số tự nhiên liên tiếp
=> (a-1)a(a+1) chia hết cho 2 và 3
Mà (2,3)=1
=>(a-1)a(a+1) chia hết cho 6
=> an(a-1)a(a+1) chia hết cho 6
=>đpcm
b, a3+5a=(a3-a)+6a=a(a2-1)+6a=(a-1)a(a+1)+6a
CM (a-1)a(a+1) chia hết cho 6
6a chia hết cho 6
=>(a-1)a(a+1)+6a chia hết cho 6
=>đpcm
c, a3+b3+c3-a-b-c=(a3-a)+(b3-b)+(c3-c)
đến đây dễ rồi, tự làm
đặt \(\frac{a}{2015}=\frac{b}{2016}=\frac{c}{2017}=k\)
=> a = 2015k
b = 2016k
c = 2017k
ta có:
4(a-b)(b-c) = 4(2015k-2016k)(2016k-2017k) = 4(-k)(-k) = 4k2 (1)
(c-a)2 = (2017k - 2015k)2 = (2k)2 = 4k2 (2)
từ 1 và 2 => 4(a-b)(b-c) = (c-a)2 (đpcm)
Áp dụng t/c của dãy tỉ số = nhau ta có:
\(\frac{a}{2015}=\frac{b}{2016}=\frac{c}{2017}\)\(=\frac{a-b}{2015-2016}=\)\(\frac{b-c}{2016-2017}=\frac{c-a}{2017-2015}\)
\(\Rightarrow\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}\)
\(\Rightarrow\frac{\left(a-b\right)\left(b-c\right)}{1}=\)\(\left(\frac{c-a}{2}\right)^2=\)\(\frac{\left(c-a\right)^2}{4}\)
=> 4(a - b)(b - c) = (c - a)2