K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
7 tháng 8 2021

b. ta có \(-x\left(x-2\right)+4=\left(x+1\right)\left(1-x\right)\Leftrightarrow-x^2+2x+4=1-x^2\)

\(\Leftrightarrow2x=-3\Leftrightarrow x=-\frac{3}{2}\)

c.\(16x^2=\left(x-1\right)^2\Leftrightarrow\orbr{\begin{cases}4x=x-1\\4x=1-x\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{3}\\x=\frac{1}{5}\end{cases}}}\)

3 tháng 1 2017

chệu nghe

13 tháng 8 2016

b)x^4+5x^2-6

=x4-x3+x3-x2+6x2-6x+6x-6

=x3(x-1)+x2(x-1)+6x(x-1)+6(x-1)

=(x-1)(x3+x2+6x+6)

=(x-1)[x2(x+1)+6(x+1)]

=(x-1)(x+1)(x2+6)

11 tháng 7 2017

giải

5x-(4-2x+x^2)(x+2)+x(x-1)(x+1)=0

5x-(4x+8-2x^2-4x+x^3+2x^2)+x(x^2-1)=0

5x-4x-8+2x^2+4x-x^3-2x^2+x^3-1x=0

(5x-4x+4x-1x)+(-8)+(2x^2-2x^2)+(-x^3+x^3)=0

4x+(-8)=0

4x=0+8

4x=8

x=8:4

x=2

11 tháng 7 2017

D)(4x+1)(16x^2-4x+1)-16x(4x^2-5)=17

64x^3-16x^2+4x+16x^2-4x+1-64x^3+80x=17

80x+1=17

80x=17-1

80x=16

x=1/5

16 tháng 9 2018

\(a,2x-1-3x\left(2x-1\right)=0\)

\(\Leftrightarrow2x-1-6x^2+3x=0\)

\(\Leftrightarrow5x-1-6x^2=0\)

\(\Leftrightarrow6x^2-5x+1=0\)

\(\Leftrightarrow6x^2-2x-3x+1=0\)

\(\Leftrightarrow2x\left(3x-1\right)-\left(3x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\3x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x=1\\3x=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{3}\end{cases}}\)

\(b,2x^2+4x=0\)

\(\Leftrightarrow2x\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x+4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)

23 tháng 3 2020

a)x≠1,\(\frac{1}{2}\)

b)\(x\ne-3,0,-\frac{3}{2}\)

23 tháng 3 2020

a)x≠1,1212

b)x≠−3,0,−32

25 tháng 8 2016

a) ( 2x + 3 )^2 - 4( x - 1 )( x + 1 ) = 49

=>4x2+12x+9-4x2+4=49

 =>12x+13=49

=>12x=36

=>x=3

b) 16x^2 - ( 4x - 5 )^2 = 15

=>16x2-16x2+40x-25=15

=>40x-25=15

=>40x=40

=>x=1

c) ( 2x + 1 )^2 - ( x - 1)^2 = 0

=>4x2+4x+1-x2+2x-1=0

=>3x2+6x=0

=>3x(x+2)=0

=>3x=0 hoặc x+2=0

=>x=0 hoặc x=-2

 

 

26 tháng 8 2016

a) \(\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\\ =>4x^2+12x+9-4x^2+4=49\\=>12x+13=49\\ =>12x=36\\ =>x=3\)

b) \(16x^2-\left(4x-5\right)^2=15\\ =>16x^2-16x^2+40x-25=15\\ =>40x-25=15\\ =>40x=40\\ =>x=1\)

c) \(\left(2x+1\right)^2-\left(x-1\right)^2=0\\ =>4x^2+4x+1-x^2+2x-1=0\\ =>3x^2+6x=0\\ =>3x\left(x+2\right)=0\\ =>\left[\frac{3x=0}{x+2=0}\right]=>\left[\frac{x=0}{x=-2}\right]\)

19 tháng 8 2016

mk thực sự cần bn hiểu bài

a) = x(x2 -4) -(x3 - 27) = x3 -4x -x3 +27 

    = 27-4x thay x = 1/4 có;

     = 26

( nếu hiu dc mk lam tip cho)

10 tháng 8 2016

ai muốn mình tích nhi hãy giúp mình giải với

a) Ta có: \(x^2-9x+20=0\)

\(\Leftrightarrow x^2-5x-4x+20=0\)

\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\)

Vậy: x∈{4;5}

b) Ta có: \(x^3-4x^2+5x=0\)

\(\Leftrightarrow x\left(x^2-4x+5\right)=0\)(1)

Ta có: \(x^2-4x+5\)

\(=x^2-4x+4+1=\left(x-2\right)^2+1\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2+1\ge1>0\forall x\)

hay \(x^2-4x+5>0\forall x\)(2)

Từ (1) và (2) suy ra x=0

Vậy: x=0

c) Sửa đề: \(x^2-2x-15=0\)

Ta có: \(x^2-2x-15=0\)

\(\Leftrightarrow x^2+3x-5x-15=0\)

\(\Leftrightarrow x\left(x+3\right)-5\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)

Vậy: x∈{-3;5}

d) Ta có: \(\left(x^2-1\right)^2=4x+1\)

\(\Leftrightarrow x^4-2x^2+1-4x-1=0\)

\(\Leftrightarrow x^4-2x^2-4x=0\)

\(\Leftrightarrow x\left(x^3-2x-4\right)=0\)

\(\Leftrightarrow x\left(x^3+2x^2+2x-2x^2-4x-4\right)=0\)

\(\Leftrightarrow x\cdot\left[x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\right]=0\)

\(\Leftrightarrow x\cdot\left(x^2+2x+2\right)\cdot\left(x-2\right)=0\)(3)

Ta có: \(x^2+2x+2\)

\(=x^2+2x+1+1=\left(x+1\right)^2+1\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+1\right)^2+1\ge1>0\forall x\)

hay \(x^2+2x+2>0\forall x\)(4)

Từ (3) và (4) suy ra

\(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy: x∈{0;2}

27 tháng 3 2020

cảm ơn bạn