Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
x2-2x+2>0 với mọi x
=x2-2.x.1/4+1/16+31/16
=(x-1/4)2 + 31/16
Vì (x-1/4)2 \(\ge\) 0 nên (x-1/4)2 + 31/16 \(\ge\) 0 với mọi x (đfcm)
Bài 1 :
a, \(\left(x+3\right)^2+\left(x-3\right)^2+2\left(x^2-9\right)\)
\(=x^2+6x+9+x^2-6x+9+2x^2-18\)
\(=4x^2\)
b, \(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)
\(=64x^3-32x^2+4x-16x^2+8x-1-64x^3-12x+48x^2+9=8\)
Bài 1 : Ta có : x3 + 2x2 + x
= x3 + x2 + x2 + x
= x2(x + 1) + x(x + 1)
= (x2 + x)(x + 1)
= x(x + 1)2
Bài : 2 :
a) Ta có : \(\frac{2}{3}x\left(x^2-4\right)=0\)
\(\Rightarrow\frac{2}{3}x\left(x-2\right)\left(x+2\right)=0\)
=> x = 0
x - 2 = 0
x + 2 = 0
=> x = 0
x = 2
x = -2
bài 1:
a. x2 - 5=0
=>x2 = 0+5 = 5
=> x = \(\sqrt{5}\)
vậy x= \(\sqrt{5}\)
sorry biết mỗi a thôi
a) x2 - 5 = 0
x2 = 0 + 5
x2 = 5
=> x = \(\sqrt{5}\)
Vậy ...
a)\(=\left(x-2\right)\left(5x-3x^2\right)\)
\(=x\left(x-2\right)\left(5-3x\right)\)
b)\(=\left(4x-x^2-4\right)\left(4x+x^2+4\right)\)
\(=-\left(x^2-4x+4\right)\left(x+2\right)^2\)
=\(-\left(x-2\right)^2\left(x+2\right)^2\)
c)\(\left(=5x^2-5xy\right)+\left(7y-7x\right)\)
\(=-5x\left(y-x\right)+7\left(y-x\right)\)
\(=\left(y-x\right)\left(7-5x\right)\)
d)\(=\left(3x^2-6x\right)-\left(2x-4\right)\)
\(=3x\left(x-2\right)-2\left(x-2\right)\)
\(=\left(x-2\right)\left(3x-2\right)\)
e)\(=[\left(x^2\right)^2+8^2+2.x^2.8]-2.8.x^2\)
\(=\left(x^2+8\right)^2-16x^2\)
\(=\left(x^2+8-4x\right)\left(x^2+8+4x\right)\)
__Chúc bạn hc tốt ......
b)x^4+5x^2-6
=x4-x3+x3-x2+6x2-6x+6x-6
=x3(x-1)+x2(x-1)+6x(x-1)+6(x-1)
=(x-1)(x3+x2+6x+6)
=(x-1)[x2(x+1)+6(x+1)]
=(x-1)(x+1)(x2+6)