Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\)
\(\Rightarrow3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\)
\(\Rightarrow2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow6A=3+1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow4A=3-\frac{101}{3^{99}}+\frac{100}{3^{100}}=3-\frac{203}{3^{100}}\)
\(\Rightarrow A=\frac{3-\frac{203}{3^{100}}}{4}=\frac{3}{4}-\frac{203}{3^{100}.4}< \frac{3}{4}\Rightarrowđpcm\)
Vậy \(A< \frac{3}{4}\)
Để tìm dư của phép chia 2^2017 cho biểu thức 1 + 2 + 2^2 + 2^3 + ... + 2^2013 + 2^2014, chúng ta có thể sử dụng định lý Fermat nhỏ.
Theo định lý Fermat nhỏ, nếu p là một số nguyên tố và a là một số tự nhiên không chia hết cho p, thì a^(p-1) ≡ 1 (mod p).
Trong trường hợp này, chúng ta có p = 2 và a = 2.
Ta biết rằng 2 không chia hết cho 2, vì vậy 2^(2-1) ≡ 1 (mod 2), nghĩa là 2^1 ≡ 1 (mod 2).
Do đó, ta có thể thấy rằng tất cả các mũ 2^k với k >= 1 đều có dư 1 khi chia cho 2.
Vì vậy, biểu thức 1 + 2 + 2^2 + 2^3 + ... + 2^2013 + 2^2014 có tổng là 2014 và có dư 0 khi chia cho 2.
Do đó, dư của phép chia 2^2017 cho biểu thức này cũng là 0.
xam xi