Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\left(a+b+c\right)^2+\left(a-b+c\right)^2+\left(a+b-c\right)^2+\left(b+c-a\right)^2\)
\(=2\left(a+c\right)^2+2b^2+\left(a+b-c\right)^2+\left(a-b-c\right)^2\)
\(=2\left(a+c\right)^2+2b^2+2\left(a-c\right)^2+2b^2\)
\(=2\left(a^2+2ac+c^2+a^2-2ac+c^2\right)+4b^2\)
\(=2\left(2a^2+2c^2\right)+4b^2\)
\(=4a^2+4b^2+4c^2\)
b: \(\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)
\(=2\left(a+b\right)^2+2c^2-2\left(a+b\right)^2\)
\(=2c^2\)
a: \(A=\left(a^2-9\right)\left(a^2+9\right)=a^4-81\)
b: \(=\left(a^2-25\right)\left(a+5\right)\)
\(=a^3+5a^2-25a-125\)
\(A=3y^2+6y+5\)
\(\Leftrightarrow A=3\left(y^2+2y+1\right)+2\)
\(\Leftrightarrow A=3\left(y+1\right)^2+2\ge2\) Với \(\forall y\in R\)
Dấu "=" xảy ra khi y = -1
Vậy GTNN của A là 2 khi y = -1
\(B=\left(x+1\right)\left(x^2+4x+5\right)\left(x+5\right)\)
\(\Leftrightarrow B=\left(x^2+6x+5\right)\left(x^2+4x+5\right)\)
\(\Leftrightarrow B=\left(t+x\right)\left(t-x\right)=t^2-x^2\)
\(\Leftrightarrow B=x^4+10x^2+25-x^2=x^4+9x^2+25\)
\(\Leftrightarrow B=\left(x^2+\dfrac{9}{2}\right)^2+\dfrac{19}{4}\ge\left(\dfrac{9}{2}\right)^2+\dfrac{19}{4}=25\) Với \(\forall x\in R\)
Dấu "=" xảy ra khi x = 0
Vậy GTNN Của B là 25 khi x = 0 .
b + a + a = b + 2a