Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
\(A=1+2+2^2+...+2^{100}\)
\(2A=2+2^2+2^3+...+2^{101}\)
\(2A-A=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)
\(A=2^{101}-1\)
\(B=1+3^2+3^4+...+3^{100}\)
\(3^2B=3^2+3^4+3^6+...+3^{102}\)
\(3^2B-B=\left(3^2+3^4+3^6+...+3^{102}\right)-\left(1+3^2+3^4+...+3^{100}\right)\)
\(8B=3^{102}-1\)
\(B=\frac{3^{102}-1}{8}\)
\(C=1+5^3+5^6+...+5^{99}\)
\(5^2C=5^3+5^6+5^9+...+5^{102}\)
\(5^2C-C=\left(5^3+5^6+5^9...+5^{102}\right)-\left(1+5^3+5^6+...+5^{99}\right)\)
\(24C=5^{102}-1\)
\(C=\frac{5^{102}-1}{24}\)
a) A = 1 + 22 + ... + 2100
=> 2A = 22 + 23 + ... + 2101
Lấy 2A - A = (2 + 22 + ... + 2101) - (1 + 22 + ... 2100)
A = 2101 - 1
b) B = 1 + 32 + 34 + ... + 3100
=> 32B = 32 + 34 + 36 + ..... + 3102
=> 9B = 32 + 34 + 36 + ..... + 3102
Lấy 9B - B = ( 32 + 34 + 36 + ..... + 3102) - (1 + 32 + 34 + ... + 3100)
8B = 3102 - 1
B = \(\frac{3^{102}-1}{8}\)
c) C = 1 + 53 + 56 + ... + 599
=> 53.C = 53 . 56 . 59 + ... + 5102
=> 125.C = 53 . 56 . 59 + ... + 5102
Lấy 125.C - C = (53 . 56 . 59 + ... + 5102) - (1 + 53 + 56 + ... + 599)
124.C = 5102 - 1
=> C = \(\frac{5^{102}-1}{124}\)
\(\frac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)
\(=\frac{\frac{101.102}{2}}{51}\)
\(=101\)
=>3B=\(-1+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)
=>3B+B=4B=\(\left(-1+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\right)+\left(-\frac{1}{3}+...+\frac{1}{3^{100}}-\frac{1}{3^{101}}\right)\)
=>4B=\(-1-\frac{1}{3^{101}}\)
=>B=\(-\frac{1+\frac{1}{3^{101}}}{4}\)
\(\frac{-3}{-9}\)+\(\frac{8}{7}\)+\(\frac{1}{-3}\)+\(\frac{26}{14}\)
=+\(\frac{8}{7}\)+\(\frac{1}{-3}\)+\(\frac{13}{7}\)
=\(\frac{1}{3}\)+\(\frac{1}{-3}\)+\(\frac{8}{7}\)+\(\frac{13}{7}\)
=0+\(\frac{8}{7}\)+\(\frac{13}{7}\)
=\(\frac{21}{7}\)
=3
\(3B=-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)
\(3B+B=\left(-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\right)+\left(\frac{-1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{100}}-\frac{1}{3^{101}}\right)\)
\(4B=-1-\frac{1}{3^{101}}\)
\(B=\frac{-\left(1+\frac{1}{3^{101}}\right)}{4}\)
\(3B=-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)
\(3B+B=\left(-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\right)+\left(\frac{-1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{100}}-\frac{1}{3^{101}}\right)\)
\(4B=-1-\frac{1}{3^{101}}\)
\(B=\frac{-\left(1+\frac{1}{3^{101}}\right)}{4}\)