K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2016

\(3B=-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)

\(3B+B=\left(-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\right)+\left(\frac{-1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{100}}-\frac{1}{3^{101}}\right)\)

\(4B=-1-\frac{1}{3^{101}}\)

\(B=\frac{-\left(1+\frac{1}{3^{101}}\right)}{4}\)

27 tháng 8 2016

\(3B=-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)

\(3B+B=\left(-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\right)+\left(\frac{-1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{100}}-\frac{1}{3^{101}}\right)\)

\(4B=-1-\frac{1}{3^{101}}\)

\(B=\frac{-\left(1+\frac{1}{3^{101}}\right)}{4}\)

3 tháng 7 2019

#)Giải :

\(A=1+2+2^2+...+2^{100}\)

\(2A=2+2^2+2^3+...+2^{101}\)

\(2A-A=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)

\(A=2^{101}-1\)

\(B=1+3^2+3^4+...+3^{100}\)

\(3^2B=3^2+3^4+3^6+...+3^{102}\)

\(3^2B-B=\left(3^2+3^4+3^6+...+3^{102}\right)-\left(1+3^2+3^4+...+3^{100}\right)\)

\(8B=3^{102}-1\)

\(B=\frac{3^{102}-1}{8}\)

\(C=1+5^3+5^6+...+5^{99}\)

\(5^2C=5^3+5^6+5^9+...+5^{102}\)

\(5^2C-C=\left(5^3+5^6+5^9...+5^{102}\right)-\left(1+5^3+5^6+...+5^{99}\right)\)

\(24C=5^{102}-1\)

\(C=\frac{5^{102}-1}{24}\)

3 tháng 7 2019

a) A = 1 + 22 + ... + 2100

=> 2A = 22 + 23 + ... + 2101

Lấy 2A - A = (2 + 22 + ... + 2101) - (1 + 22 + ... 2100)

             A  = 2101 - 1

b) B = 1 + 32 + 34 + ... + 3100

=> 32B = 32 + 34 + 36 + ..... + 3102

=>  9B =  32 + 34 + 36 + ..... + 3102

Lấy 9B - B = ( 32 + 34 + 36 + ..... + 3102) - (1 + 32 + 34 + ... + 3100)

            8B = 3102 - 1

              B = \(\frac{3^{102}-1}{8}\)

c) C = 1 + 53 + 56 + ... + 599

=> 53.C = 53 . 56 . 59 + ... + 5102

=> 125.C = 53 . 56 . 59 + ... + 5102 

Lấy 125.C - C = (53 . 56 . 59 + ... + 5102) - (1 + 53 + 56 + ... + 599)

             124.C = 5102 - 1

=>                C = \(\frac{5^{102}-1}{124}\)

13 tháng 10 2018

\(\frac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)

\(=\frac{\frac{101.102}{2}}{51}\)

\(=101\)

5 tháng 3 2016

D/S: 2357,5

5 tháng 3 2016

số số hạng : ( 99,100 - 1,2 ) : 2,2 + 1 = 45,5

tổng : ( 99,1 + 1,2 ) x 45,5 : 2 = 2281,825

B = 2281,825

6 tháng 8 2016

olm-logo.pngBài này khó wa

6 tháng 8 2016

=>3B=\(-1+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)

=>3B+B=4B=\(\left(-1+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\right)+\left(-\frac{1}{3}+...+\frac{1}{3^{100}}-\frac{1}{3^{101}}\right)\)

=>4B=\(-1-\frac{1}{3^{101}}\)

=>B=\(-\frac{1+\frac{1}{3^{101}}}{4}\)

\(\frac{-3}{-9}\)+\(\frac{8}{7}\)+\(\frac{1}{-3}\)+\(\frac{26}{14}\)

=+\(\frac{8}{7}\)+\(\frac{1}{-3}\)+\(\frac{13}{7}\)

=\(\frac{1}{3}\)+\(\frac{1}{-3}\)+\(\frac{8}{7}\)+\(\frac{13}{7}\)

=0+\(\frac{8}{7}\)+\(\frac{13}{7}\)

=\(\frac{21}{7}\)

=3

21 tháng 3 2021

Mình đang rất cần.