Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(25x^2-10x+1-y^2\)
\(=\left(5x-1\right)^2-y^2\)
\(=\left(5x-y-1\right)\left(5x+y-1\right)\)
\(4y^2-4x^2-4y+1\)
\(=\left(2y-1\right)^2-\left(2x\right)^2\)
\(=\left(2y+2x-1\right)\left(2y-2x-1\right)\)
\(-y^2+6y-9+x^2\)
\(=x^2-\left(y-3\right)^2\)
\(=\left(x+y-3\right)\left(x-y+3\right)\)
a ) = 3 ( x^2 + 2xy + y^2 - z^2 )
= 3 [ ( x + y)^2 - z^2]
= 3 ( x + y - z)( x + y + z)
b) 4 y^ 2 - 5 y - 6 = 4y^2 - 8y + 3y - 6 = 4y ( y- 2 ) + 3 ( y- 2 ) = ( 4y +3 )( y - 2 )
d) x^4 + x^2y^2 + y^4 = x^4 + 2 x^2y^2 + y^4 - x^2y^2 = ( x^2 + y^2 )^2 - (xy)^2 = ( x^2 - xy + y^ 2)( x^2 + xy + y^2)
b1:
câu a,f áp dụng a2-b2=(a-b)(a+b)
câu b,c áp dụng a3-b3=(a-b)(a2+ab+b2)
câu d: \(x^2+2xy+x+2y=x\left(x+2y\right)+\left(x+2y\right)=\left(x+1\right)\left(x+2y\right)\)
câu e: \(7x^2-7xy-5x+5y=7x\left(x-y\right)-5\left(x-y\right)=\left(7x-5\right)\left(x-y\right)\)
câu g xem lại đề
A = 2x2 + 6x = 2( x2 + 3x + 9/4 ) - 9/2 = 2( x + 3/2 )2 - 9/2 ≥ -9/2 ∀ x
Dấu "=" xảy ra khi x = -3/2
=> MinA = -9/2 <=> x = -3/2
B = x2 - 2x + y2 - 4y + 6 = ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 1 = ( x - 1 )2 + ( y - 2 )2 + 1 ≥ 1 ∀ x, y
Dấu "=" xảy ra khi x = 1 ; y = 2
=> MinB = 1 <=> x = 1 ; y = 2
C = x2 - 2xy + 6y2 - 12x + 2y + 45
= ( x2 - 2xy + y2 - 12x + 12y + 36 ) + ( 5y2 - 10y + 5 ) + 4
= [ ( x2 - 2xy + y2 ) - ( 12x - 12y ) + 36 ] + 5( y2 - 2y + 1 ) + 4
= [ ( x - y )2 - 2( x - y ).6 + 62 ] + 5( y - 1 )2 + 4
= ( x - y - 6 )2 + 5( y - 1 )2 + 4 ≥ 4 ∀ x, y
Dấu "=" xảy ra khi x = 7 ; y = 1
=> MinC = 4 <=> x = 7 ; y = 1
D = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )
= [ ( x - 1 )( x + 6 ) ][ ( x + 2 )( x + 3 ) ]
= ( x2 + 5x - 6 )( x2 + 5x + 6 )
= ( x2 + 5x )2 - 36 ≥ -36 ∀ x
Dấu "=" xảy ra <=> x2 + 5x = 0
<=> x( x + 5 ) = 0
<=> x = 0 hoặc x = -5
=> MinD = -36 <=> x = 0 hoặc x = -5
1) \(A=2x^2+6x=2\left(x^2+3x+\frac{9}{4}\right)-\frac{9}{2}=2\left(x+\frac{3}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(2\left(x+\frac{3}{2}\right)^2=0\Rightarrow x=-\frac{3}{2}\)
Vậy Min(A) = -9/4 khi x = -3/2
2) \(B=x^2-2x+y^2-4y+6\)
\(B=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)
\(B=\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy Min(B) = 1 khi x = 1 và y = 2
3) \(C=x^2-2xy+6y^2-12x+2y+45\)
\(C=\left(x^2-2xy+y^2\right)-12\left(x-y\right)+36+\left(5y^2-10y+5\right)+4\)
\(C=\left(x-y\right)^2-12\left(x-y\right)+36+5\left(y-1\right)^2+4\)
\(C=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y-6\right)^2=0\\5\left(y-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=7\\y=1\end{cases}}\)
Vậy Min(C) = 4 khi x = 7 và y = 1
4) \(D=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)
\(D=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(D=\left(x^2+5x\right)^2-36\ge-36\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x^2+5x\right)^2=0\Rightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy Min(D) = -36 khi x = 0 hoặc x = -5
a) \(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2\)
\(=\left(x^3+y^3\right)\left(x^3-y^3\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)\)
b) sửa đề nhé!
\(6x-9-x^2=-\left(x^2-6x+9\right)\)
\(=-\left(x-3\right)^2\)
a) \(y^2-x^2+6y+9\)
\(=\left(y^2+6y+9\right)-x^2\)
\(=\left(y+3\right)^2-x^2\)
\(=\left[\left(y+3\right)-x\right]\left[\left(y+3\right)+x\right]\)
\(=\left(y-x+3\right)\left(y+x+3\right)\)
b) \(4y^2-x^2-4y+1\)
\(=\left(4y^2-4x+1\right)-x^2\)
\(=\left(2y-1\right)^2-x^2\)
\(=\left[\left(2y-1\right)+x\right]\left[\left(2y-1\right)-x\right]\)
\(=\left(2y+x-1\right)\left(2y-x-1\right)\)
c) \(\left(x-y\right)^2-x^2+y^2\)
\(=\left(x-y\right)^2-\left(x^2-y^2\right)\)
\(=\left(x-y\right)^2-\left(x+y\right)\left(x-y\right)\)
\(=\left(x-y\right)\left[\left(x-y\right)-\left(x+y\right)\right]\)
\(=\left(x-y\right)\left(x-y-x-y\right)\)
\(=-2y\left(x-y\right)\)
d) \(x^6-y^6\)
\(=\left(x^3\right)^2-\left(y^3\right)^2\)
\(=\left(x^3+y^3\right)\left(x^3-y^3\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)
a: =(y+3)^2-x^2
=(y+3+x)(y+3-x)
b: =(2y-1)^2-x^2
=(2y-1-x)(2y-1+x)
c: =x^2-2xy+y^2-x^2+y^2
=2y^2-2xy
=2y(y-x)
d: =(x^3-y^3)(x^3+y^3)
=(x-y)(x+y)(x^2+xy+y^2)(x^2-xy+y^2)