Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta dùng phương pháp xét giá trị riêng.
- Đặt \(ax^3+bx^2+c=\left(x+2\right).Q\left(x\right)\)
Với \(x=-2\Rightarrow-8a+4b+c=\left(-2+2\right)Q\left(x\right)=0\)\(\left(\cdot\right)\)
- Đặt \(ax^3+bx^2+c=\left(x^2-1\right).Q\left(x\right)+x+5\)
- Với \(x=1\Rightarrow a+b+c=\left(1-1\right)Q\left(x\right)+1+5\)
\(\Rightarrow a+b+c=6\) Với \(x=-1\Rightarrow-a+b+c=\left(1-1\right)Q\left(x\right)+5-1\)
\(\Rightarrow-a+b+c=4\)
Cộng cả hai vế vào có : \(2\left(b+c\right)=10\)
\(\Rightarrow b+c=5\)
\(\Rightarrow a=1\)
Thay \(a=1\)vào \(\left(\cdot\right);\)có :
\(-8+4b+c=0\)
\(\Rightarrow4b+c=8\)
Mà \(b+c=5\)
\(\Rightarrow\left(4b+c\right)-\left(b+c\right)=8-5\)
\(\Rightarrow3b=3\)
\(\Rightarrow b=1\)
\(\Rightarrow c=5-b=5-1=4\)
Vậy \(\hept{\begin{cases}a=1\\b=1\\c=4\end{cases}}.\)
Em tham khảo bài có cách làm tương tự ở link dưới đây:
Câu hỏi của Đặng Tuấn Anh - Toán lớp 9 - Học toán với OnlineMath
Tìm a,b,c biết ax^3 + bx^2 + c chia hết x+2 và chia x^2 - 1 dư x + 5
ax³+bx²+c =ax³+2ax²+(b-2a)x²+2(b-2a)x-2(b-2a)x-4(b...
=ax²(x+2)+(b-2a)x(x+2)-2(b-2a)(x+2)+4(b...
=(x+2)[ax²+(b-2a)x-2(b-2a)]+4b-8a+c
ax³+bx²+c chia hết cho x+2 =>4b-8a+c=0. (1)
ax³+bx²+c =ax³-ax+bx²-b+ax+b+c
=(x²-1)(ax+b)+ax+b+c. chia cho x²-1 dư ax+b+c. đồng nhất hệ số của số dư với x+5 ta có a=1; b+c=5. (2)
Thay a=1 vào (1) => 4b+c=8 (3).
(3)-(2) => 3b=3 =>b=1. thay b=1 vào (2)=>c=4
ĐS: a=1; b=1; c=4.
Cho P(x) = 2x4 + ax2+ bx + c
Tìm a,b,c để \(P\left(x\right)⋮\left(x+2\right)\) và chia cho x2-1 dư x
p(x)=2x4+ax +bx+c
vì \(P\left(x\right)⋮\left(x+2\right)\)nên P(-2)=0 hay\(32+4a-2b+c=0\leftrightarrow4a-2b+c=-32\)(1)
P(x) chia (x2-1) dư x =>P(x)-x\(⋮\)(x2-1)
=> 2x4+ax2+(b-1)x+c\(⋮\left(x^2-1\right)\)
gọi thương của phép chia trên là Q:
2x4+ax2+(b-1)x+c=(x-1)(x+1).Q
x=1\(\Rightarrow\)2+a+b-1+c=0 <=> a+b+c=-1(2)
x=-1 =>2+a+1-b+c=0 <=> a-b+c=-3(3)
từ (1),(2)và (3) ta có hệ\(\left\{\begin{matrix}4a-2b+c=-32\\a+b+c=-1\\a-b+c=-3\end{matrix}\right.\)....
giải hệ ta được \(\left\{\begin{matrix}a=-\frac{28}{3}\\b=1\\c=\frac{22}{3}\end{matrix}\right.\)
vậy ..