K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2018

\(x^2-2x-4y^2-4y\)

\(=x^2-2x+1-4y^2-4y-1\)

\(=\left(x-1\right)^2-\left(2y+1\right)^2\)

\(=\left(x-1-2y-1\right)\left(x-1+2y+1\right)\)

\(=\left(x-2y-2\right)\left(x+2y\right)\)

19 tháng 10 2018

\(a,x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x-4y\right)\)

\(=x^2-\left(2y\right)^2\left(2x-4y\right)\)

\(=\left[\left(x+2y\right).\left(x-2y\right)\right]-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

\(b,x^4-2x^3-4x-4x\)

\(=\left(x^4-4\right)-\left(2x^3+4x\right)\)

\(=\left[\left(x^2\right)^2-2^2\right]-2x-\left(x^2-2\right)\)

\(=\left(x^2-2\right).\left(x^2+2\right)-2x\left(x^2-2\right)\)

\(=\left(x^2+2\right)\left(x^2-2-2x\right)\)

3 tháng 9 2018

\(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

1 tháng 10 2020

\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\  = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\  = {a^2}{b^2} + 1 + {a^2} + {b^2}\\  = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\  = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\  = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\  = {x^3} + 2{x^2} + x + x + 1\\  = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\  = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\  = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\  = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\  = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\  = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\  = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\  = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\  = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\  = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\  = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\  = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\  = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array}

24 tháng 7 2019

\(a,VT=\left(a+b+c\right)\left(a-b+c\right)\)

\(=\left(a+c+b\right)\left(a+c-b\right)\)

\(=\left(a+c\right)^2-b^2\)

\(=a^2+2ac+c^2-b^2=VP\)

\(b,VT=\left(3x+2y\right)\left(3x-2y\right)-\left(4x-2y\right)\left(4x+2y\right)\)

\(=9x^2-4y^2-16x^2+4y^2=-7x^2=VP\)

\(c,VT=x^3-1-x^3-1=-2=VP\)

\(d,VT=8x^3+1-8x^3+1=2=VP\)

\(e,VT=\left(x^2+2xy+4y^2\right)\left(x-2y-2x+1\right)\)

\(=\left(x^2+2xy+4y^2\right)\left(-x-2y+1\right)\)

\(=-x^3-2x^2y+x^2-2x^2y-4xy^2+2xy-4xy^2-8y^3+4y^2\)

( bn kiểm tra lại đề nhé)

4 tháng 8 2019

a,\(-4x^2+4x-1\)

\(\Leftrightarrow\left(-2x-1\right)^2\)

b,\(\left(2x+1\right)^2-4\left(x-1\right)^2\)

\(\Rightarrow\left[2x+1-2\left(x-1\right)\right].\left[2x+1+2\left(x-1\right)\right]\)

\(\Rightarrow\left(2x+1-2x+2\right)\left(2x+1+2x-2\right)\)

\(\Rightarrow3\left(4x-1\right)\)

c,\(\left(2x-y\right)^2-4x^2+12x-9\)

\(\Leftrightarrow\left(2x+y\right)^2-\left(4x^2-12x+9\right)\)

\(\Leftrightarrow\left(2x+y\right)^2-\left(2x-3\right)^2\)

\(\Leftrightarrow\left(2x+y-2x+3\right)\left(2x+y+2x-3\right)\)

\(\Rightarrow\left(y+3\right)\left(4x+y-3\right)\)

d,\(\left(x+1\right)^2-4\left(x+1\right)y^2+4y^4\)

\(\Leftrightarrow\left(x+1\right)^2-2\left(x+1\right)2y^2+2^2y^4\)

\(\Leftrightarrow\left(x+1\right)^2-2\left(x+1\right)2y^2+4\left(y^2\right)^2\)

\(\Leftrightarrow\left(x+1\right)^2-2\left(x+1\right)-2y^2+\left(2y^2\right)^2\)

\(\Leftrightarrow\left(x+1-2y^2\right)^2\)

16 tháng 12 2018

Câu 1:

a/ (-5x3)(2x2+3x-5)

=-10x5-15x4+25x3

b/(2x-1)x

=2x2-x

c/(x-y)(3x2+4xy)

=3x3+4x2y-3x2y-4xy2

=3x3 +x2y-4xy2

Câu 2:

a/ x3-2x2+x

=x(x2-2x+1)

=x(x-1)2

b/x2-x-12

=x2 +3x-4x-12

=(x2 +3x)+(-4x-12)

=x(x+3)-4(x+3)

=(x+3)(x-4)

c/ 2x-6

=2(x-3)

e/ x2+4x+4-y2

=(x2+4x+4)-y2

=(x+2)2-y2

=(x+2-y)(x+2+y)

d/ x2-2xy+y2-16

=(x2-2xy+y2)-16

=(x-y)2-16

=(x-y-4)(x-y+4)

Câu 3:

a: \(=\dfrac{5xy-4+3xy+4}{2x^2y^3}=\dfrac{8xy}{2x^2y^3}=\dfrac{4}{xy^2}\)

b: \(=\dfrac{y-12}{6\left(y-6\right)}+\dfrac{6}{y\left(y-6\right)}\)

\(=\dfrac{y^2-12y+36}{6y\left(y-6\right)}=\dfrac{y-6}{6y}\)

c: \(=\dfrac{3x+1-2x+3}{x+y}=\dfrac{x+4}{x+y}\)

d: \(=\dfrac{4x+7+5x+7}{9}=\dfrac{9x+14}{9}\)

e: \(=\dfrac{5\left(x+2\right)}{2\left(2x-1\right)}\cdot\dfrac{-2\left(x-2\right)}{x+2}=\dfrac{-5\left(x-2\right)}{2x-1}\)

8 tháng 4 2020

a/ \(\left(x-1\right)^2=x^2-2x+1\) nên chọn đáp án D

b/ \(\left(x+2\right)^2=x^2+4x+4\) nên chọn đáp án C

c/ \(\left(a-b\right)\left(b-a\right)=-\left(a-b\right)\left(a-b\right)=-\left(a-b\right)^2\) nên chọn đáp án A

d/ \(-x^2+6x-9=-\left(x^2-6x+9\right)=-\left(x-3\right)^2\) nên chọn đáp án D

3 tháng 10 2017

đề bài đâu

ucche

3 tháng 10 2017

cô hk ghi nha bn

sorry nha

8 tháng 11 2018

a\(\left(x+2\right)\cdot\left(x^2-2x+4\right)=x^3-2x^2+4x+2x^2-4x+8=x^3+8\)

b.\(\left(3x^4-2x^2+4x-2\right):\left(2x+2\right)=1.5x^3+1.5x^4-x-x^2+2-1=1.5x^4+1.5x^3-x^2-x+1\)

f.\(x^2+13x+22=\left(x+2\right)\cdot\left(x+11\right)=>x=-2hoacx=-11\)

mình chỉ làm dc thế thôi bạn qua fl +like instagram của mk dc k _cpo.04_ mình mới lập

18 tháng 11 2022

e: =>x^2(x-4)+16x-64+a+64 chia hết cho x-4

=>a+64=0

=>a=-64

g: =(x-4)(x+4)+(x+4)^2

=(x+4)(x-4+x+4)

=2x(x+4)

d: \(=\dfrac{2x^2-4x+4x-8-42}{x-2}=2x+4+\dfrac{-42}{x-2}\)

 

18 tháng 12 2017

4.a) \(2x^2-10x-3x-2x^2-26=0\)

\(-13x-26=0\Rightarrow-13\left(x+2\right)=0\)

\(\Rightarrow x=-2\)

b) \(2\left(x+5\right)-x^2-5x=0\)

\(2x+10-x^2-5x=0\Leftrightarrow-x^2-3x+10=0\)

\(-\left(x^2+3x-10\right)=0\)

\(-\left(x^2-2x+5x-10\right)=-\left(x\left(x-2\right)+5\left(x-2\right)\right)=0\)

\(-\left(x-2\right)\left(x+5\right)=0\)

\(\left\{{}\begin{matrix}x-2=0\\x+5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

c) \(\left(2x-3\right)^2-\left(x+5\right)^2=0\)

\(\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)

\(\left(x-8\right)\left(3x+2\right)=0\)

\(\left\{{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)

d) \(x^3+x^2-4x-4=0\)

\(x^2\left(x+1\right)-4\left(x+1\right)=0\)

\(\left(x+1\right)\left(x^2-4\right)=\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\x-2=0\\x+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\x=2\\x=-2\end{matrix}\right.\)

g) \(\left(x-1\right)\left(2x+3-x\right)=0\)

\(\left(x-1\right)\left(x+3\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-1=0\\x+3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

h) \(x^2-4x+8-2x+1=x^2-6x+9=0\)

\(\left(x-3\right)^2=0\Rightarrow x=3\)

DD
9 tháng 8 2021

a) \(x^2-2x-4y^4-4y^2=\left(x^2-2x+1\right)-\left(4y^4+4y^2+1\right)\)

\(=\left(x-1\right)^2-\left(2y^2+1\right)^2=\left(x-2y^2-2\right)\left(x+2y^2\right)\)

b) \(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27\)

\(=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-x+9\right)\)

c) \(x^3+2x^2+2x+1=x^3+x^2+x^2+x+x+1\)

\(=x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+x+1\right)\)

d) \(\left(ab-1\right)^2+\left(a+b\right)^2=a^2b^2-2ab+1+a^2+2ab+b^2\)

\(=a^2b^2+a^2+b^2+1\)

\(=\left(a^2+1\right)\left(b^2+1\right)\)