Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2-9\right).\left(3-5x\right)=0\)
\(\Rightarrow\hept{\begin{cases}x^2-9=0\\3-5x=0\end{cases}\Rightarrow}\hept{\begin{cases}x^2=0+9\\5x=3-0\end{cases}\Rightarrow\hept{\begin{cases}x^2=9\\5x=3\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x^2=3^2\\x=3:5\end{cases}\Rightarrow\hept{\begin{cases}x=3\\x=\frac{3}{5}\end{cases}}}\)
Vậy .....................
~ Hok tốt ~
๖²⁴ʱBєѕт︵๖ۣۜAρσ™★ツ
\(\orbr{\begin{cases}x^2-9=0\\3-5x=0\end{cases}}\) chớ không phải \(\hept{\begin{cases}x^2-9=0\\3-5x=0\end{cases}}\)
Cần phân biệt "hoặc" và "và"
a, \(\Rightarrow x-2\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
x-2 | 1 | -1 | 3 | -3 |
x | 3 | 1 | 5 | -1 |
b, \(3\left(x-2\right)+13⋮x-2\Rightarrow x-2\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
x-2 | 1 | -1 | 13 | -13 |
x | 3 | 1 | 15 | -11 |
c, \(x\left(x+7\right)+2⋮x+7\Rightarrow x+7\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x+7 | 1 | -1 | 2 | -2 |
x | -6 | -8 | -5 | -9 |
\(x^2-25\%=0\)
\(\Rightarrow x^2-\frac{1}{4}=0\)
\(\Rightarrow x^2=0+\frac{1}{4}\)
\(\Rightarrow x^2=\frac{1}{4}\)
Tự làm tiếp !!! ^.^"
a) (x2-1)(x2-4)<0
=> x2-1 và x2-4 trái dấu nhau
Ta thấy: x2 >=0 với mọi x => x2-1 > x2-4
=> \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}\Leftrightarrow}\hept{\begin{cases}x>\pm1\\x< \pm2\end{cases}}}\)
=> Không có giá trị củ x thỏa mãn đề bài
a có x=4 và b có x=5 bạn nhé
\(a,\left(x-4\right)\left(x+7\right)=0\Rightarrow\orbr{\begin{cases}x-4=0\\x+7=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=-7\end{cases}}\)
\(b,x^2-5x=0\Rightarrow x\left(x-5\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)