Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{x+11}{x-6}=\frac{x-6+17}{x-6}=\frac{x-6}{x-6}+\frac{17}{x-6}\)
=>x-6\(\in\) Ư(17)
x-6 | 1 | -1 | 17 | -17 |
x | 7 | 5 | 23 | -11 |
a. vì x+3 chia hết cho(chc) x+3 => 5(x+3) chc x+3 => 5x+15 chc x+3 (1)
ta có 12+5x= 5x+12 (2)
từ (1) và (2) => (5x+15)-(5x+12) chc x+3
=> (5x+15-5x-12) chc x+3
=> 3 chc x+3
=> x+3 thuộc Ư(3)= {1; -1; 3; -3}
bảng xét dấu:
x+3 | 1 | -1 | 3 | -3 |
x | -2 | -4 | 0 | -6 |
vậy x thuộc {-2;-4;0;-6} để 12+5x chc x+3
các câu sau làm tương tự nhé :)))))
1. Tìm số tự nhiên x, biết:
a) ( x + 16 ) chia hết cho ( x + 1 ):
( x + 1 + 15 ) chia hết cho ( x + 1 )
( x + 1 ) chia hết cho ( x + 1 ); 15 chia hết cho ( x + 1 ).
Vậy ( x + 1 ) thuộc Ư (15) với ( x + 1 ) phải lớn hơn hoặc bằng 1.
Ư (15) = { 1; 3; 5; 15 }.
x + 1 có thể bằng 1; 3; 5 hoặc 15.
Nếu:
x + 1 = 1 => x = 0
x + 1 = 3 => x = 2
x + 1 = 5 => x = 4
x + 1 = 15 => x = 14
Kết luận: Nếu x = 0; 2; 4; 14 thì ( x + 16 ) chia hết cho ( x + 1 )
b) ( 4x + 20 ) chia hết cho ( 2x + 1 )
[ 2. ( 2x + 1 ) + 18 ] chia hết cho ( 2x + 1 )
2. ( 2x + 1 ) chia hết cho ( 2x + 1 ); 18 chia hết cho ( 2x + 1 ). Vì x thuộc N nên 2x + 1 sẽ lớn hơn hoặc bằng 1 và 2x + 1 là số lẻ.
Vậy ( 2x + 1 ) thuộc Ư (18)
Ư (18) = { 1; 2; 3; 6; 9; 18 }.
Vậy 2x + 1 có thể bằng 1; 3; 9 ( như yêu cầu đã nêu ở trên ).
2x + 1 = 1 => 2x = 0 => x = 0
2x + 1 = 3 => 2x = 2 => x = 1
2x + 1 = 9 => 2x = 8 => x = 4
Kết luận: Nếu x = 0; 1; 4 thì ( 4x + 20 ) chia hết cho ( 2x + 1 )
2. Chứng tỏ abba chia hết cho 11.
Ta có: abba = 1000a + 100b + 10b + a
= ( 1000a + a ) + ( 100b + 10b )
= 1001a + 110 b = 11. 91. a + 11. 10 .b
= 11. ( 91. a + 10. b )
Vì 11 chia hết cho 11, ( 91. a + 10. b ) thuộc N nên 11. ( 91. a + 10. b ) chia hết cho 11.
Vậy abba chia hết cho 11.
Mình làm có đúng không? Nếu sai sửa giúp mình nhé!
a) Ta có: \(2x-2\)\(⋮\)\(x-2\)
\(\Leftrightarrow\)\(2\left(x-2\right)+2\)\(⋮\)\(x-2\)
Ta thấy \(2\left(x-2\right)\)\(⋮\)\(x-2\)
nên \(2\)\(⋮\)\(x-2\)
hay \(x-2\)\(\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Ta lập bảng sau:
\(x-2\) \(-2\) \(-1\) \(1\) \(2\)
\(x\) \(0\) \(1\) \(3\) \(4\)
Vậy \(x=\left\{0;1;3;4\right\}\)
Bài làm
a) 10 chia hết cho 2x + 1
<=> 2x + 1 là Ư(10) = { +1; +2; +5; +10}
Ta có bảng sau:
2x +1 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
x | 0 | -1 | 0,5 | -1,5 | 2 | -3 | 4,5 | -5,5 |
Mà x > 0
Vậy x = {0; 0,5; 2; 4,5 }
b) Ta có: 2x + 108 chia hết cho 2x + 3
<=> 2x + 3 + 105 chia hết cho 2x + 3
<=> 105 chia hết cho 2x + 3
<=> 2x + 3 là Ư(105)
Mà x > 0
<=> 2x + 3 = { 1; 3; 5; 7; 15; 35; 105}
Ta có bảng sau:
2x + 3 | 1 | 3 | 5 | 7 | 15 | 35 | 105 |
x | -1 | 0 | 1 | 2 | 6 | 16 | 51 |
Vậy x = {-1; 0; 1; 2; 6; 16; 51}
c) Vì x + 13 chia hết cho x + 1
<=> x + 1 + 12 chia hết cho x + 1
<=> 12 chia hết cho x + 1
Mà x > 0
=> x + 1 thuộc Ư(12) = { 1; 2; 3; 4; 6; 12}
Ta có bảng sau:
x + 1 | 1 | 2 | 3 | 4 | 6 | 12 |
x | 0 | 1 | 2 | 3 | 5 | 11 |
Vậy x = {0; 1; 2; 3; 5; 11}
a) \(x-2⋮x+7\)
\(x+7-9⋮x+7\)
Mà \(x+7⋮x+7\)
\(\Rightarrow-9⋮x+7\)
\(\Rightarrow x+7\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
\(x+7\) | \(1\) | \(-1\) | \(3\) | \(-3\) | \(9\) | \(-9\) |
\(x\) | \(-6\) | \(-8\) | \(-4\) | \(-10\) | \(2\) | \(-16\) |
Vậy, \(x\in\left\{-16;-10;-8;-6;-4;2\right\}\)
b) \(2x+1⋮2x-3\)
\(2x-3+4⋮2x-3\)
Mà \(2x-3⋮2x-3\)
\(\Rightarrow4⋮2x-3\)
\(\Rightarrow2x-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
VÌ \(2x-3\)là số lẻ và \(x\inℤ\)
\(\Rightarrow2x-3\in\left\{\pm1\right\}\)
\(2x-3\) | \(1\) | \(-1\) |
\(x\) | \(2\) | \(1\) |
Vậy, \(x\in\left\{1;2\right\}\)