Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(A=2018\cdot2018\)
\(=\left(2019-1\right)\cdot2018=2019\cdot2018-2018\)
\(B=2017\cdot2019\)
\(=\left(2018-1\right)\cdot2019=2018\cdot2019-2019\)
\(\Rightarrow A>B\)
b/
\(A=2018\cdot2019\)
\(=\left(2017+1\right)\cdot2019=2017\cdot2019+2019\)
\(B=2017\cdot2020\)
\(=2017\cdot\left(2019+1\right)=2017\cdot2019+2017\)
\(\Rightarrow A>B\)
Ta có : \(0< \frac{2017}{2018}< 1\) nên \(\frac{2017}{2018}>\frac{2017+2019}{2018+2019}\)(1)
\(0< \frac{2018}{2019}< 1\) nên \(\frac{2018}{2019}>\frac{2018+2018}{2018+2019}\) (2)
Cộng vế theo vế 1 và 2 ta được : \(B=\frac{2017}{2018}+\frac{2018}{2019}>\frac{2017+2018+2018+2019}{2018+2019}=\frac{2017+2018}{2018 +2019}+1=A+1>A\)
Vậy B>A
Ta có :
\(A=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)
Vì :
\(\frac{2017}{2018+2019}< \frac{2017}{2018}\)
\(\frac{2018}{2018+2019}< \frac{2018}{2019}\)
Nên \(\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}\) ( cộng theo vế )
\(\Rightarrow\)\(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
Mình thấy là A<B.
Tách A=2017+2018/2018+2019=2017/2018+2019 + 2018/2018+2019
Ta thấy từng số hạng của A lần lượt nhỏ hơn số hạng của B
=> A<B
a ) Ta có :
\(\frac{450}{463}=1-\frac{13}{463}\) ( 1 )
\(\frac{123}{126}=1-\frac{3}{126}\)( 2 )
Từ ( 1 ) và ( 2 ) thấy 13/463 > 3/126 do đó 450/463 < 123/126
Vậy 450/463 < 123/126
b ) Ta có :
\(\frac{36}{53}=1-\frac{17}{53}\)( 1 )
\(\frac{58}{89}=1-\frac{31}{89}\)( 2 )
Từ 1 và 2 thấy 31/89 > 17/53 => 35/53 > 58/89
Vậy 35/53 > 58/89