Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/\(A=\left(3+5\right)^2=8^2=64\)
\(B=3^2+5^2=9+25=34\)
\(\Rightarrow A>B\)
b/ \(C=\left(3+5\right)^3=8^3=512\)
\(D=3^3+5^3=27+125=152\)
\(\Rightarrow C>D\)
a/ A= (3+5)2 = 82 = 64
B = 32 + 52 = 9 + 25 = 34
vì 64>34 => A > B
b/ C = (3+5)3 = 83 = 512
D = 33 + 53 = 27 + 125 = 152
Vì 512>152 => C > D
a/ A = 82
A = 64
B = 9 + 25, B = 34
b/ C = 83, CC = 512
D = 27 + 125
D = 152
a ) Ta có :
\(\frac{450}{463}=1-\frac{13}{463}\) ( 1 )
\(\frac{123}{126}=1-\frac{3}{126}\)( 2 )
Từ ( 1 ) và ( 2 ) thấy 13/463 > 3/126 do đó 450/463 < 123/126
Vậy 450/463 < 123/126
b ) Ta có :
\(\frac{36}{53}=1-\frac{17}{53}\)( 1 )
\(\frac{58}{89}=1-\frac{31}{89}\)( 2 )
Từ 1 và 2 thấy 31/89 > 17/53 => 35/53 > 58/89
Vậy 35/53 > 58/89
Ta có: \(B=\dfrac{2017+2018+2019}{2018+2019+2020}=\dfrac{2017}{2018+2019+2020}+\dfrac{2018}{2018+2019+2020}+\dfrac{2019}{2018+2019+2020}\)
Mà \(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019+2020}\)
\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019+2020}\)
\(\dfrac{2019}{2020}>\dfrac{2019}{2018+2019+2020}\)
\(\Rightarrow\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}>\dfrac{2017}{2018+2019+2020}+\dfrac{2018}{2018+2019+2020}+\dfrac{2019}{2018+2919+2020}\)
\(\Rightarrow A>B.\)
Vậy \(A>B.\)
\(n^2+2019\)là 1 số chính phương nên ta đặt \(n^2+2019=k^2\)
\(\Rightarrow k^2-n^2=2019\Rightarrow\left(k+n\right)\left(k-n\right)=2019\)
\(\Rightarrow\left(k+n\right)\left(k-n\right)=673.3=2019.1=3.673=1.2019\)
+) \(\hept{\begin{cases}k+n=673\\k-n=3\end{cases}}\Rightarrow n=335\)
+) \(\hept{\begin{cases}k+n=2019\\k-n=1\end{cases}}\Rightarrow n=1009\)
+) \(\hept{\begin{cases}k+n=3\\k-n=673\end{cases}}\Rightarrow n=-335\)
+) \(\hept{\begin{cases}k+n=1\\k-n=2019\end{cases}}\Rightarrow n=-1009\)
Vậy \(n\in\left\{\pm335;\pm1009\right\}\)