Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(a^2+2b+3=a^2+1+2b+2\ge2a+2b+2=2\left(a+c+1\right)\)
\(b^2+2c+3=b^2+1+2c+2\ge2b+2c+2=2\left(b+c+1\right)\)
\(c^2+2a+3=c^2+1+2a+2\ge2c+2a+2=2\left(c+a+1\right)\)
Suy ra \(\frac{a}{a^2+2b+3}+\frac{b}{b^2+2c+3}+\frac{c}{c^2+2a+3}\le\frac{a}{2\left(a+b+1\right)}+\frac{b}{2\left(b+c+1\right)}+\frac{c}{2\left(c+a+1\right)}\)
\(=\frac{1}{2}\left(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\right)\)
Tương đương \(\frac{3}{2}-\frac{a}{a^2+2b+3}-\frac{b}{b^2+2c+3}-\frac{c}{c^2+2a+3}\ge\frac{1}{2}\left(\frac{b+1}{a+b+1}+\frac{c+1}{b+c+1}+\frac{a+1}{c+a+1}\right)\)
Đặt \(M=\frac{b+1}{a+b+1}+\frac{c+1}{b+c+1}+\frac{a+1}{c+a+1}\)
Áp dụng bất đẳng thức Cauchy-Schwarz ta được : \(M=\frac{\left(b+1\right)^2}{\left(b+1\right)\left(a+b+1\right)}+\frac{\left(c+1\right)^2}{\left(c+1\right)\left(b+c+1\right)}+\frac{\left(a+1\right)^2}{\left(a+1\right)\left(c+a+1\right)}\)
\(\ge\frac{\left(a+b+c+3\right)^2}{\left(a+1\right)\left(a+b+1\right)+\left(c+1\right)\left(b+c+1\right)+\left(a+1\right)\left(c+a+1\right)}\)
Do \(\left(a+1\right)\left(a+b+1\right)+\left(c+1\right)\left(b+c+1\right)+\left(a+1\right)\left(c+a+1\right)=a^2+b^2+c^2+ab+bc+ca+3\left(a+b+c\right)+3\)\(=\frac{1}{2}\left(a^2+b^2+c^2\right)+ab+bc+ca+3\left(a+b+c\right)+\frac{9}{2}=\frac{1}{2}\left(a+b+c+3\right)^2\)
Từ đó \(M\ge\frac{\left(a+b+c+3\right)^2}{\frac{1}{2}\left(a+b+c+3\right)^2}=2\Rightarrow\frac{3}{2}-\frac{a}{a^2+2b+3}-\frac{b}{b^2+2c+3}-\frac{c}{c^2+2a+3}\ge\frac{1}{2}.2=1\)
\(< =>\frac{a}{a^2+2b+3}+\frac{b}{b^2+2c+3}+\frac{c}{c^2+2a+3}\le\frac{1}{2}\left(đpcm\right)\)
Bài toán hoàn tất . Đẳng thức xảy ra khi và chỉ khi \(a=b=c=1\)
\(\frac{a^3}{b+2c}+\frac{b^3}{c+2a}+\frac{c^3}{a+2b}=\frac{a^4}{ab+2ac}+\frac{b^4}{bc+2ab}+\frac{c^4}{ca+2bc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3\left(ab+bc+ca\right)}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{3}\)
(a+b)2=5 => ((a+b)2)3=53=125..
Vậy ( a+b) 6 =125;
ủng hộ nha bạn
Câu 1:
\(a^3+a^2b-ab^2-b^3\)
\(=a^2\left(a+b\right)-b^2\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2-b^2\right)\)
\(=\left(a+b\right)\left(a-b\right)\left(a+b\right)\)
\(=\left(a+b\right)^2\left(a-b\right)\)
Câu 2:
\(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)
\(=a\left(b^3-c^3\right)+bc^3-a^3b+a^3c-b^3c\)
\(=a\left(b-c\right)\left(b^2+bc+c^2\right)-a^3\left(b-c\right)-bc\left(b-c\right)\left(b+c\right)\)
\(=\left(b-c\right)\left(ab^2+abc+c^2a-a^3-b^2c-bc^2\right)\)
\(=\left(b-c\right)\left[a\left(c-a\right)\left(c+a\right)-b^2\left(c-a\right)-bc\left(c-a\right)\right]\)
\(=\left(b-c\right)\left(c-a\right)\left(ca+a^2-b^2-bc\right)\)
\(=\left(b-c\right)\left(c-a\right)\left[\left(a-b\right)\left(a+b\right)+c\left(a-b\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)
Bài 2. a/ \(1\le a,b,c\le3\) \(\Rightarrow\left(a-1\right).\left(a-3\right)\le0\) , \(\left(b-1\right)\left(b-3\right)\le0\), \(\left(c-1\right).\left(c-3\right)\le0\)
Cộng theo vế : \(a^2+b^2+c^2\le4a+4b+4c-9\)
\(\Rightarrow a+b+c\ge\frac{a^2+b^2+c^2+9}{4}=7\)
Vậy min E = 7 tại chẳng hạn, x = y = 3, z = 1
b/ Ta có : \(x+2y+z=\left(x+y\right)+\left(y+z\right)\ge2\sqrt{\left(x+y\right)\left(y+z\right)}\)
Tương tự : \(y+2z+x\ge2\sqrt{\left(y+z\right)\left(z+x\right)}\) , \(z+2y+x\ge2\sqrt{\left(z+y\right)\left(y+x\right)}\)
Nhân theo vế : \(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge8\left(x+y\right)\left(y+z\right)\left(z+x\right)\) hay
\(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge64\)
a2 + b2 + c2 + 42=2a +8b +10c
\(\Rightarrow a^2+b^2+c^2+42-2a-8b-10c=0\)
\(\Rightarrow\left(a^2-2a+1\right)+\left(b^2-8b+16\right)+\left(c^2-10c+25\right)=0\)
\(\Rightarrow\left(a-1\right)^2+\left(b-4\right)^2+\left(c-5\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}a-1=0\\b-4=0\\c-5=0\end{cases}}\Rightarrow\hept{\begin{cases}a=1\\b=4\\c=5\end{cases}}\)
Khi đó \(a+b+c=1+4+5=10\)
cho x<0 thỏa mãn \(\frac{1}{x^2+9x+20}\)+\(\frac{1}{x^2+11x+30}\)+\(\frac{1}{x^2+13x+42}\)=\(\frac{1}{18}\) tìm x=?
mn giải giúp mk với