\(\frac{n+1}{n-2}\)

Tìm n \(\varepsilonℤ\)để A có giá...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2018

* Tìm GTNN : 

Ta có : 

\(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)

Để A đạt GTNN thì \(\frac{3}{n-2}\) phải đạt GTNN hay \(n-2< 0\) và đạt GTLN 

\(\Rightarrow\)\(n-2=-1\)

\(\Rightarrow\)\(n=1\)

Suy ra : 

\(A=\frac{n+1}{n-2}=\frac{1+1}{1-2}=\frac{2}{-1}=-2\)

Vậy \(A_{min}=-2\) khi \(n=1\)

Chúc bạn học tốt ~ 

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìmgiá trị lớn nhất đó.Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn...
Đọc tiếp

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.

Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìm

giá trị lớn nhất đó.
Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.
Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn nhất.
Bài tập 7. Tìm giá trị nhỏ nhất của của biểu thức sau: A= \(\frac{6\cdot n-1}{3\cdot n-2}\) (với n là số nguyên )

Bài tập 8: cho phân số A= \(\frac{n+1}{n-3}\) . Tìm n để có giá trị lớn nhất.
Bài tập 9: ho phân số: p= \(\frac{6\cdot n+5}{3\cdot n+2}\) (n \(\in\)  N Với giá trị nào của n thì phân số p
có giá trị lớn nhất? tìm giá trị lớn nhất đó.

0
7 tháng 8 2017

\(A=\frac{4n+1}{2n+3}=\frac{4n+6}{2n+3}-\frac{5}{2n+3}=\frac{2\left(2n+3\right)}{2n+3}-\frac{5}{2n+3}=2-\frac{5}{2n+3}\)

a) A nguyên khi \(\frac{5}{2n+3}\) nguyên <=> 5 chia hết cho 2n+3 

<=>\(2n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

<=>\(2n\in\left\{-8;-4;-2;2\right\}\)

<=>\(n\in\left\{-4;-2;-1;1\right\}\)

b) A lớn nhất khi \(2-\frac{5}{2n+3}\)lớn nhất <=>\(\frac{5}{2n+3}\)  nhỏ nhất <=> 2n+3 lớn nhất < 0 mà n nguyên

<=> 2n+3=-1 <=> n=-2

\(maxA=2-\frac{5}{2n+3}=2-\frac{5}{2\left(-2\right)+3}=2-\frac{5}{-1}=2-\left(-5\right)=7\) tại n=-2

phần giá trị nhỏ nhất bạn làm nốt

29 tháng 4 2020

ko bt nha ko tên

29 tháng 4 2020

@phan thi ly na bạn ko biết comment làm j dị

5 tháng 4 2019

\(A=\frac{2n+3}{n-2}=\frac{2n-4+7}{n-2}=\frac{2.\left(n-2\right)}{n-2}+\frac{7}{n-2}=2+\frac{7}{n-2}\)

Ta có A lớn nhất \(\Leftrightarrow\frac{7}{n-2}\)lớn nhất

\(\Leftrightarrow\hept{\begin{cases}n-2coGTNN\\n-2>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}n>2;n\in Z\\n-2coGTNN\end{cases}}\)

\(\Leftrightarrow n=3\)

Khi đó A có GTLN là \(\frac{2.3+3}{3-2}=9\)

Vậy MAX A =9 \(\Leftrightarrow x=3\)

(P/S: có vài chỗ anh viết ko ra tiếng việt nhé )

19 tháng 3 2018

\(b)\) Ta có : 

\(A=\frac{6n-1}{3n+2}=2-\frac{5}{3n+2}\) ( câu a mình đã phân tích rồi nên khỏi phân tích lại ) 

Để A đạt GTNN thì \(\frac{5}{3n+2}\) phải đạt GTLN hay nói cách khác \(3n+2>0\) và đạt GTNN

\(\Rightarrow\)\(3n+2=1\)

\(\Rightarrow\)\(3n=-1\)

\(\Rightarrow\)\(n=\frac{-1}{3}\) ( loại vì \(n\inℤ\) ) 

\(\Rightarrow\)\(3n+2=2\)

\(\Rightarrow\)\(3n=0\)

\(\Rightarrow\)\(n=0\)

Suy ra : \(A=2-\frac{5}{3n+2}=2-\frac{5}{3.0+2}=2-\frac{5}{2}=\frac{-1}{2}\)

Vậy \(A_{min}=\frac{-1}{3}\) khi \(n=0\)

Chúc bạn học tốt ~ 

19 tháng 3 2018

\(a)\) Ta có : 

\(\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=\frac{6n+4}{3n+2}-\frac{5}{3n+2}=\frac{2\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=2-\frac{5}{3n+2}\)

Để \(A\inℤ\)  thì \(\frac{5}{3n+2}\inℤ\)\(\Rightarrow\)\(5⋮\left(3n+2\right)\)\(\Rightarrow\)\(\left(3n+2\right)\inƯ\left(5\right)\)

Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)

Suy ra : 

\(3n+2\)\(1\)\(-1\)\(5\)\(-5\)
\(n\)\(\frac{-1}{3}\)\(-1\)\(1\)\(\frac{-7}{3}\)

Mà \(n\inℤ\) nên \(n\in\left\{-1;1\right\}\)

Vậy \(n=1\) hoặc \(n=-1\)

Chúc bạn học tốt ~ 

6 tháng 3 2019

a) vì \(\frac{2a-3}{4}\in N\)

Nên giá trị nhỏ nhất của phân số trên sẽ bằng 0

ta có: \(\frac{2a-3}{4}=0\)

\(\Rightarrow2a-3=0\)

\(\Rightarrow2a=3\)

\(\Rightarrow a=\frac{3}{2}\)

b) vì \(\frac{5}{3a-7}\in N\)

Nên giá trị nhỏ nhất của phân số trên sẽ bằng 0

ta có: \(\frac{5}{3a-7}=0\)

\(\Rightarrow3a-7=\frac{5}{0}\)(vô lí vì mẫu số luôn khác 0)

VẬY \(a=\varnothing\)

18 tháng 5 2018

Để A là số nguyên 

<=> 4n + 1 chia hết cho 2n + 3 

<=> 4n + 6 - 5 chia hết cho 2n + 3

<=> 2(2n + 3) - 5 chia hết cho 2n + 3 

<=> 5 chia hết cho 2n + 3

<=> 2n + 3 thuộc Ư(5) = {-1 ; 1 ; -5 ; 5}

<=> n thuộc {-2 ; -1 ; -4 ; 1}