Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{1000}{100-x}\)
\(P_{MAX}\Rightarrow P\in Z^+\)
\(\Rightarrow100-x=1\)
\(\Rightarrow x=100-1=99\)
\(\Rightarrow P_{MAX}=\dfrac{1000}{100-99}=1000\)
\(A=\dfrac{1}{8.14}+\dfrac{1}{14.20}+\dfrac{1}{20.26}+.....+\dfrac{1}{50.56}\)
\(A=\dfrac{1}{6}\left(\dfrac{1}{8}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{20}+\dfrac{1}{20}-\dfrac{1}{26}+.....+\dfrac{1}{50}-\dfrac{1}{56}\right)\)
\(A=\dfrac{1}{6}.\left(\dfrac{1}{8}-\dfrac{1}{56}\right)=\dfrac{1}{6}.\dfrac{3}{28}=\dfrac{1}{56}\)
\(B=\dfrac{45}{12.21}+\dfrac{45}{21.30}-\dfrac{40}{24.34}-\dfrac{40}{34.44}-\dfrac{40}{44.54}-\dfrac{40}{54.64}\)
\(B=5\left(\dfrac{1}{12}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{30}\right)-5\left(\dfrac{1}{24}-\dfrac{1}{34}+\dfrac{1}{34}-\dfrac{1}{44}+\dfrac{1}{44}-\dfrac{1}{54}+\dfrac{1}{54}-\dfrac{1}{64}\right)\)
\(B=5\left(\dfrac{1}{12}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{30}+\dfrac{1}{24}-\dfrac{1}{34}+\dfrac{1}{34}-\dfrac{1}{44}+\dfrac{1}{44}-\dfrac{1}{54}+\dfrac{1}{54}-\dfrac{1}{64}\right)\)\(B=5\left(\dfrac{1}{12}-\dfrac{1}{64}\right)=5.\dfrac{13}{192}=\dfrac{65}{192}\)
\(\dfrac{A}{B}=\dfrac{1}{\dfrac{56}{\dfrac{65}{192}}}=\dfrac{24}{455}\)
\(\dfrac{1}{8}=\dfrac{3}{24}\)
\(\Rightarrow\dfrac{A}{B}< \dfrac{1}{8}\rightarrowđpcm\)
\(A=\frac{1}{8.14}+\frac{1}{14.20}+\frac{1}{20.26}+...+\frac{1}{50.56}\)
\(A=\frac{1}{6}.\left(\frac{6}{8.14}+\frac{6}{14.20}+\frac{6}{20.26}+...+\frac{6}{50.56}\right)\)
\(A=\frac{1}{6}.\left(\frac{1}{8}-\frac{1}{14}+\frac{1}{14}-\frac{1}{20}+\frac{1}{20}-\frac{1}{26}+...+\frac{1}{50}-\frac{1}{56}\right)\)
\(A=\frac{1}{6}.\left(\frac{1}{8}-\frac{1}{56}\right)\)
\(A=\frac{1}{6}.\frac{3}{28}\)
\(A=\frac{1}{56}\)
\(B=\frac{45}{12.21}+\frac{45}{21.30}-\frac{40}{24.34}-\frac{40}{34.44}-\frac{40}{44.54}-\frac{40}{54.64}\)
\(B=5.\left(\frac{9}{12.21}+\frac{9}{21.30}\right)-4.\left(\frac{10}{24.34}+\frac{10}{34.44}+\frac{10}{44.54}+\frac{10}{54.64}\right)\)
\(B=5.\left(\frac{1}{12}-\frac{1}{21}+\frac{1}{21}-\frac{1}{30}\right)-4.\left(\frac{1}{24}-\frac{1}{34}+\frac{1}{34}-\frac{1}{44}+\frac{1}{44}-\frac{1}{54}+\frac{1}{54}-\frac{1}{64}\right)\)
\(B=5.\left(\frac{1}{12}-\frac{1}{30}\right)-4.\left(\frac{1}{24}-\frac{1}{64}\right)\)
\(B=5.\frac{1}{20}-4.\frac{5}{192}\)
\(B=\frac{1}{4}-\frac{5}{48}\)
\(B=\frac{7}{48}\)
Ta có \(\frac{A}{B}=\frac{1}{56}\div\frac{7}{48}=\frac{1}{56}\times\frac{48}{7}=\frac{6}{49}\)
Lấy \(\frac{6}{49}-\frac{1}{8}=-\frac{1}{392}< 0\)
\(\Rightarrow\frac{6}{49}< \frac{1}{8}\) hay \(\frac{A}{B}< \frac{1}{8}\)
\(A=\frac{1}{8.14}+\frac{1}{14.20}+\frac{1}{20.26}+....+\frac{1}{50.56}\)
\(=\frac{1}{6}.(\frac{6}{8.14}+\frac{6}{14.20}+\frac{6}{20.26}+....+\frac{6}{50.56})\)
\(=\frac{1}{6}.(\frac{1}{8}-\frac{1}{14}+\frac{1}{14}-\frac{1}{20}+\frac{1}{20}-\frac{1}{26}+....+\frac{1}{50}-\frac{1}{56})\)
\(=\frac{1}{6}.(\frac{1}{8}-\frac{1}{56})\)
\(=\frac{1}{6}.(\frac{7}{56}-\frac{1}{56})\)
\(=\frac{1}{6}.\frac{6}{56}\)
\(=\frac{1}{56}\)
\(B=\frac{45}{12.21}+\frac{45}{21.30}-\frac{40}{24.34}-\frac{40}{34.44}-\frac{40}{44.54}-\frac{40}{54.64}\)
\(=5(\frac{9}{12.21}+\frac{9}{21.30})-4(\frac{10}{24.34}+\frac{10}{34.44}+\frac{10}{44.54}+\frac{10}{54.64})\)
\(=5(\frac{1}{12}-\frac{1}{21}+\frac{1}{21}-\frac{1}{30})-4(\frac{1}{24}-\frac{1}{34}+\frac{1}{34}-\frac{1}{44}+\frac{1}{44}-\frac{1}{54}+\frac{1}{54}-\frac{1}{64})\)
\(=5(\frac{1}{12}-\frac{1}{30})-4(\frac{1}{24}-\frac{1}{64})\)
\(=5(\frac{5}{60}-\frac{2}{60})-(\frac{4}{24}-\frac{4}{64})\)
\(=5.\frac{1}{20}-(\frac{1}{6}-\frac{1}{16})\)
\(=\frac{1}{4}-(\frac{8}{48}-\frac{3}{48})\)
\(=\frac{1}{4}-\frac{5}{48}\)
\(=\frac{12}{48}-\frac{5}{48}=\frac{7}{48}\)
\(\frac{A}{B}=\frac{1}{56}\div\frac{7}{48}\)
\(=\frac{1}{56}.\frac{48}{7}\)
\(=\frac{6}{49}=\frac{48}{392}\)bé hơn \(\frac{49}{392}=\frac{1}{8}\)
Vậy \(\frac{A}{B}\)bé hơn \(\frac{1}{8}\)
Chúc bạn học tốt
ta có B = \(\dfrac{45}{12.21}+\dfrac{45}{21.30}-\left(\dfrac{40}{24.34}+...+\dfrac{40}{54.64}\right)\)
\(=5\left(\dfrac{9}{12.21}+\dfrac{9}{21.30}\right)-4\left(\dfrac{10}{24.34}+...+\dfrac{10}{54.64}\right)\)
\(=5\left(\dfrac{1}{12}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{30}\right)-4\left(\dfrac{1}{24}-\dfrac{1}{34}+\dfrac{1}{34}-\dfrac{1}{44}+...+\dfrac{1}{54}-\dfrac{1}{64}\right)\)
\(=5\left(\dfrac{1}{12}-\dfrac{1}{30}\right)-4\left(\dfrac{1}{24}-\dfrac{1}{64}\right)\)
\(=5.\dfrac{1}{20}-4.\dfrac{5}{192}\)
\(=5.\dfrac{1}{20}-\dfrac{4}{192}.5\)
\(=5\left(\dfrac{1}{20}-\dfrac{4}{192}\right)=5.\dfrac{7}{240}=\dfrac{7}{48}\)
a) \(\dfrac{x}{-9}=\dfrac{-40}{45}\)
\(\Leftrightarrow x.45=\left(-9\right).\left(-40\right)\)
\(\Leftrightarrow x.45=360\)
\(\Leftrightarrow x=\dfrac{360}{45}=8\)
Vậy x=8
b: \(\Leftrightarrow\left|2x+\dfrac{1}{3}\right|+\dfrac{4}{9}=-5+\dfrac{4}{9}\)
=>|2x+1/3|=-5(vô lý)
a: \(\Leftrightarrow x=\dfrac{-40\cdot\left(-9\right)}{45}=8\)
a
= { 1*( 1+1/2+1/3+1/4) } / { 1 * ( 1-1/2 +1/3-1/4)} : { 3*(1+1/2+1/3+1/4)} / { 2*( 1-1/2 +1/3-1/4)}
Sau đó bn tự tính ra nhé cứ tính nhu bình thường sẽ ra.
Mà mình thấy máy câu này yêu cầu tính chứ có bảo tính theo cách hợp lí đâu? Vì thế bn cứ lấy máy tính tính như bình thường là được .
ồ, lâu h ms gặp
a,
Dễ thấy \(\dfrac{2005^{2016}+1}{2005^{2017}+1}< 1\)
Áp dụng khi \(\dfrac{a}{b}< 1\Rightarrow\dfrac{a}{b}< \dfrac{a+n}{b+n}\left(n\in N^{\circledast}\right)\)
Ta có:
\(\dfrac{2005^{2016}+1}{2005^{2017}+1}< \dfrac{2005^{2016}+1+\left(2005^2-1\right)}{2005^{2017}+1+\left(2005^2-1\right)}=\dfrac{2005^{2016}+2005^2}{2005^{2017}+2005^2}=\dfrac{2005^2\left(2005^{2014}+1\right)}{2005^2\left(2005^{2015}+1\right)}=\dfrac{2005^{2014}+1}{2005^{2015}+1}\)
Vậy \(\dfrac{2005^{2016}+1}{2005^{2017}+1}< \dfrac{2005^{2014}+1}{2005^{2015}+1}\)
b,
\(\dfrac{19}{10}=\dfrac{10+9}{10}=\dfrac{10}{10}+\dfrac{9}{10}=1+\dfrac{9}{10}\\ \dfrac{49}{40}=\dfrac{40+9}{40}=\dfrac{40}{40}+\dfrac{9}{40}=1+\dfrac{9}{40}\)
Vì \(10< 40\Rightarrow\dfrac{9}{10}>\dfrac{9}{40}\Rightarrow1+\dfrac{9}{10}>1+\dfrac{9}{40}\Leftrightarrow\dfrac{19}{10}>\dfrac{49}{40}\)Vậy \(\dfrac{19}{10}>\dfrac{49}{40}\)
c,
\(\dfrac{13}{20}=\dfrac{20-7}{20}=\dfrac{20}{20}-\dfrac{7}{20}=1-\dfrac{7}{20}\\ \dfrac{33}{40}=\dfrac{40-7}{40}=\dfrac{40}{40}-\dfrac{7}{40}=1-\dfrac{7}{40}\)
Vì \(20< 40\Rightarrow\dfrac{7}{20}>\dfrac{7}{40}\Rightarrow1-\dfrac{7}{20}< 1-\dfrac{7}{40}\Leftrightarrow\dfrac{13}{20}< \dfrac{33}{40}\)
Vậy \(\dfrac{13}{20}< \dfrac{33}{40}\)
Áp dụng tính chất:
\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)
\(\)Đặt: \(B=\dfrac{2005^{2016}+1}{2005^{2017}+1}< 1\)
\(\Rightarrow B< \dfrac{2005^{2016}+1+4020024}{2005^{2017}+1+4020024}\)
\(B< \dfrac{2005^{2016}+4020025}{2005^{2017}+4020025}\)
\(B< \dfrac{2005^2\left(2005^{2014}+1\right)}{2005^2\left(2005^{2015}+1\right)}\)
\(B< \dfrac{2005^{2014}+1}{2005^{2015}+1}=A\)
\(B< A\)
a: \(=\dfrac{2}{3}\left(\dfrac{3}{60\cdot63}+\dfrac{3}{63\cdot66}+...+\dfrac{3}{117\cdot120}\right)+\dfrac{2}{2006}\)
\(=\dfrac{2}{3}\left(\dfrac{1}{60}-\dfrac{1}{63}+...+\dfrac{1}{117}-\dfrac{1}{120}\right)+\dfrac{2}{2006}\)
\(=\dfrac{2}{3}\cdot\dfrac{1}{120}+\dfrac{1}{2003}=\dfrac{1}{180}+\dfrac{1}{2003}=\dfrac{2183}{180\cdot2003}\)
b: \(=\dfrac{5}{4}\left(\dfrac{4}{40\cdot44}+\dfrac{4}{44\cdot48}+...+\dfrac{4}{76\cdot80}\right)+\dfrac{5}{2006}\)
\(=\dfrac{5}{4}\left(\dfrac{1}{40}-\dfrac{1}{80}\right)+\dfrac{5}{2006}\)
\(=\dfrac{5}{4}\cdot\dfrac{1}{80}+\dfrac{5}{2006}=\dfrac{1}{64}+\dfrac{5}{2006}=\dfrac{1163}{64192}\)
c: \(=\dfrac{1}{3}\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+\dfrac{3}{14\cdot17}+\dfrac{3}{17\cdot20}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{20}\right)=\dfrac{1}{3}\cdot\dfrac{9}{20}=\dfrac{3}{20}\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow ad=bc\)
1.
giả sử điều đó đúng thì:
\(c\left(b+a\right)=a\left(c+d\right)\\ bc+ca=ac+ad\Rightarrow bc+ca=ca+bc\left(đúng\right)\)
\(\Rightarrow\dfrac{a}{b+a}=\dfrac{c}{d+c}\)
2.
\(\dfrac{a-2b}{b}=\dfrac{c-2d}{d}\\ \dfrac{a-b}{b}-1=\dfrac{c-d}{d}-1\\ \dfrac{a-b}{b}=\dfrac{c-d}{d}\\ \left(a-b\right)d=\left(c-d\right)b\\ ad-bd=bc-bd\\ \Rightarrow ad-bd=ad-bd\left(đúng\right)\)
\(\Rightarrow\dfrac{a-2b}{b}=\dfrac{c-2d}{d}\) cũng đúng
1)
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\)
\(\dfrac{a}{b+a}=\dfrac{c}{c+d}\Leftrightarrow a\left(c+d\right)=c\left(b+a\right)\)
\(\Leftrightarrow ac+ad=bc+ac\Leftrightarrow ad=bc\)
\(\Leftrightarrow\dfrac{a}{b+a}=\dfrac{c}{c+d}\)
2)
\(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Leftrightarrow\dfrac{a}{b}-2=\dfrac{c}{d}-2\)
\(\Leftrightarrow\dfrac{a}{b}-\dfrac{2b}{b}=\dfrac{c}{d}-\dfrac{2d}{d}\)
\(\Leftrightarrow\dfrac{a-2b}{b}=\dfrac{c-2d}{d}\rightarrowđpcm\)
Bài 1:
1: \(M=\left|x-1\right|+x+2\)
Trường hợp 1: x>=1
M=x-1+x+2=2x+1
Trường hợp 2: x<1
M=1-x+x+2=3
2: \(N=x-3+\left|x-3\right|\)
Trường hợp 1: x>=3
\(N=x-3+x-3=2x-6\)
Trường hợp 2: x<3
\(N=x-3+3-x=0\)
3: \(P=2x-1-\left|x-2\right|\)
Trường hợp 1: x<2
\(P=2x-1-\left(2-x\right)=2x-1-2+x=3x-3\)
TRường hợp 2: x>=2
\(P=2x-1-x+2=x+1\)
\(A=\dfrac{1}{8.14}+\dfrac{1}{14.20}+\dfrac{1}{20.26}+...+\dfrac{1}{50.56}\)
\(A=\dfrac{1}{6}.\left(\dfrac{6}{8.14}+\dfrac{6}{14.20}+\dfrac{6}{20.26}+...+\dfrac{6}{50.56}\right)\)
\(A=\dfrac{1}{6}.\left(\dfrac{1}{8}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{20}+\dfrac{1}{20}-\dfrac{1}{26}+...+\dfrac{1}{50}-\dfrac{1}{56}\right)\)
\(A=\dfrac{1}{6}.\left(\dfrac{1}{8}-\dfrac{1}{56}\right)\)
\(A=\dfrac{1}{6}.\left(\dfrac{7}{56}-\dfrac{1}{56}\right)\)
\(A=\dfrac{1}{6}.\dfrac{6}{56}\)
\(A=\dfrac{1}{1}.\dfrac{1}{56}\)
\(A=\dfrac{1}{56}\)
\(B=\dfrac{45}{12.21}+\dfrac{45}{21.30}-\dfrac{40}{24.34}-\dfrac{40}{34.44}-\dfrac{40}{44.54}-\dfrac{40}{54.64}\)
\(B=5\left(\dfrac{9}{12.21}+\dfrac{9}{21.30}\right)-4\left(\dfrac{10}{24.34}+\dfrac{10}{34.44}+\dfrac{10}{44.54}+\dfrac{10}{54.64}\right)\)
\(B=5\left(\dfrac{1}{12}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{30}\right)-4\left(\dfrac{1}{24}-\dfrac{1}{34}+\dfrac{1}{34}-\dfrac{1}{44}+\dfrac{1}{44}-\dfrac{1}{54}+\dfrac{1}{54}-\dfrac{1}{64}\right)\)\(B=5\left(\dfrac{5}{60}-\dfrac{2}{60}\right)-4\left(\dfrac{1}{24}-\dfrac{1}{64}\right)\)
\(B=5.\dfrac{3}{60}-\left(\dfrac{4}{24}-\dfrac{4}{64}\right)\)
\(B=5.\dfrac{1}{20}-\left(\dfrac{1}{6}-\dfrac{1}{16}\right)\)
\(B=\dfrac{5}{20}-\left(\dfrac{8}{48}-\dfrac{3}{48}\right)\)
\(B=\dfrac{1}{4}-\dfrac{5}{48}\)
\(B=\dfrac{12}{48}-\dfrac{5}{48}\)
\(B=\dfrac{7}{48}\)
\(\dfrac{A}{B}=\dfrac{1}{56}:\dfrac{7}{48}\)
\(\dfrac{A}{B}=\dfrac{1}{56}.\dfrac{48}{7}\)
\(\dfrac{A}{B}=\dfrac{1}{7}.\dfrac{6}{7}\)
\(\dfrac{A}{B}=\dfrac{6}{49}=\dfrac{48}{392}< \dfrac{49}{392}=\dfrac{1}{8}\)
\(\dfrac{A}{B}< \dfrac{1}{8}\)
Vậy \(\dfrac{A}{B}< \dfrac{1}{8}\)