Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(50^2-49^2\right)+\left(48^2-47^2\right)+\left(46^2-45^2\right)+...+\left(2^2-1^2\right)\)
\(=\left(50-49\right)\left(50+49\right)+\left(48-47\right)\left(48+47\right)+...\)
\(+\left(4-3\right)\left(4+3\right)+\left(2-1\right)\left(2+1\right)\)
(ta thấy trong mỗi tích đều có 1 thừa số bằng 1, VD: 50-49=1)
\(A=99+95+91+...+7+3\) số hạng cách nhau 4 đơn vị
Số số hạng của A là \(\left(99-3\right):4+1=25\)
=> \(A=\left(99+3\right).25:2=1275\)
Theo bài ra ta có:
\(50^2-49^2+48^2-47^2+....+2^2-1^2\)
\(=\left(50^2-49^2\right)+\left(48^2-47^2\right)+....+\left(2^2-1^2\right)\)
\(=\left(50-49\right)\left(50+49\right)+\left(48-47\right)\left(48+47\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=1\times\left(50+49\right)+1\times\left(48+47\right)+...+1\times\left(2+1\right)\)
\(=50+49+48+47+...+2+1\)
\(=\left(50+49\right)\times50\div2=2475\)
Vậy giá trị biểu thức = 2475
Sủa đề : tính \(D=\left(50^2+48^2+46^2+....+2^2\right)-\left(49^2+47^2+45^2+...+1^2\right)\)
\(=\left(50^2-49^2\right)+\left(48^2-47^2\right)+\left(46^2-45^2\right)+.....+\left(2^2-1^2\right)\)
\(=\left(50-49\right)\left(50+49\right)+\left(48-47\right)\left(48+47\right)+....+\left(2-1\right)\left(2+1\right)\)
\(=50+49+48+.....+2+1\)
\(=\frac{50\left(50+1\right)}{2}=1275\)
D=(502-492)+(482-472)+...+(22-12)
= ( (50-49)(50+49)+(48-47)(48+47)+...+(2-1)(2+1)
= 50+49+48+47+...+2+1
=\(\frac{\left(50+1\right).50}{2}\)
=1275
532 + 106 * 47 + 472
= 532 + 2 * 53 * 47 + 472
= ( 53 + 47 )2 = 1002 = 10000
C=502 - 492 +482 -472 +...+22 -12
=(502 - 492)+(482 -472 )+.....+(22-1)(
= (50 - 49)(50 + 49) + (48 – 47)(48 + 47) + ... +
(2 + 1)(2 – 1)
=(50+49).1+(48+47).1+.....+(2+1).1
= 50 + 49 + 48 + 47 + ... + 2 + 1
= (50 + 1) + (49 + 2) + ... + (25 +26)
= 51 . 25 = 1275
\(M=31^2+2.31.19+19^2\)
\(\Rightarrow M=\left(31+19\right)^2\)
\(\Rightarrow M=50^2\)
\(\Rightarrow M=2500\)
\(N=45^2-90.35+25^2\)
\(\Rightarrow N=45^2-2.45.35+25^2\)
\(\Rightarrow N=\left(45-25\right)^2\)
\(\Rightarrow N=20^2=400\)
\(P=51^2-50^2+49^2-48^2+...+3^2-2^2+1^2\)
\(\Rightarrow P=\left(51-50\right)\left(51+50\right)+\left(49-48\right)\left(49+48\right)+...+\left(3-2\right)\left(3+2\right)+1\)
\(\Rightarrow P=101+97+...+5+1\)
\(\Rightarrow P=\frac{\left(101+1\right)\left[\left(101-1\right):2+1\right]}{2}\)
\(\Rightarrow P=102.51:2=51.51=51^2\)
1. Câu hỏi của Koy Pham - Toán lớp 8 | Học trực tuyến
2.
a. \(\left(x-3\right)\left(x^2+3x+9\right)-\left(54+x^3\right)\)
\(=\left(x^3-27\right)-\left(54+x^3\right)\)
\(=x^3-27-54-x^3\)
\(=-81\)
b. \(\left(3x+y\right)\left(9x^2-3xy+y^2\right)-\left(3x-y\right)\left(9x^2+xy+y^2\right)\)
\(=\left[\left(3x\right)^3+y^3\right]-\left[\left(3x\right)^3-y^3\right]\)
\(=2y^3\)
Ta có: \(50^2-49^2+48^2-47^2+....+2^2-1^2\)
\(=\left(50^2-1^2\right)-\left(49^2-2^2\right)-\left(48^2-3^2\right)-...-\left(27^2-24^2\right)-\left(26^2-25^2\right)\)
\(=\left(51\cdot49\right)-\left(51\cdot47\right)-\left(51\cdot45\right)-....-\left(51\cdot3\right)-\left(51\cdot1\right)\)
=51(49-47-45-...-3-1)
=51*25
=1275
học đây có tốt ko