K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2016

A=(x2+y2)2 +(x2+y2) = 1+1 =2

em moi hoc lop 6 do chu ac kia oi

3 tháng 3 2016

bài này đơn giản mà pn

26 tháng 5 2017

\(=\frac{25}{4}-\left(x-\frac{1}{2}\right)^2\) xuống lớp 7 học đi nhé

26 tháng 5 2017

GTLN \(-x^2\)+\(x\)+\(6\)=\(-\left(x^2-x-6\right)\)

=\(-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}-6\right)\)=\(-\left(x-\frac{1}{2}\right)^2-\frac{25}{4}\)

=\(\left(x-\frac{1}{2}\right)^2+\frac{25}{4}\)

Vì \(\left(x-\frac{1}{2}\right)^2\)\(\ge\)\(0\)Nên \(\left(x-\frac{1}{2}\right)^2+\frac{25}{4}\)\(\ge0\)

Vậy GTLN của biểu thức là \(\frac{25}{4}\)khi \(x=\frac{1}{2}\)

  gọi chiều rộng của hình chữ nhật là a(0<a<1005) 
=>chiều dài của hình chữ nhật là 1005-a 
theo đề bài ta có pt: 
a(1005-a)+13300=(a+10)(1005-a+20) 
<=>-a^2+1005a+13300=-a^2+1025a-10a+102... 
<=>10a=3050 
<=>a=305 
=>rộng=305:dài=700

mình lớp 5 mong các bạn tích thật nhiều và luôn

27 tháng 3 2016

Gọi chiều dài ban đầu hcn là x (0<x<2010) 
Gọi chiều rộng ban đầu hcn là y (0<y<x) 
=>diện tích hcn ban đầu là: xy (cm2) 
do hcn ban đầu có chu vi =2010cm nên ta có pt: 
2(x+y)=2010 <=> x+y=1005 (1) 
Khi tăng chiều dài thêm 20cm thì chiều dài mới là: (x+20) cm 
và tăng chiều rộng thêm 10cm thì chiều rộng mới là (y+10) cm 
Do đó diện tích hcn ban đâu tăng lên 13300 cm2 
=>ta có pt: ( x+20)(y+10)=xy+13300 <=> x+2y=1310 (2) 
từ (1)và (2) ta có hệ: 
x+y=1005 
x+2y=1310 
Giải hệ pt ta đc: x=700; y=305 
Vậy chiều dài ban đầu của hcn là 700 cm 
chiều rộng ban đầu là 305 cm

12 tháng 3 2017

Sai đề rồi nha bạn! Điều kiện:  \(x^2+y^3\ge x^3+y^4\)

Sử dụng bất đẳng thức  \(C-S,\)  ta có:

\(\left(x^3+y^3\right)^2=\left(x\sqrt{x}.x\sqrt{x}+y^2.y\right)^2\le\left(x^3+y^4\right)\left(x^3+y^2\right)\le\left(x^2+y^3\right)\left(x^3+y^2\right)\)

\(\le\left(\frac{x^2+y^3+x^3+y^2}{2}\right)^2\)

\(\Rightarrow\)  \(x^3+y^3\le\frac{x^2+y^3+x^3+y^2}{2}\)  \(\Leftrightarrow\)  \(x^3+y^3\le x^2+y^2\) \(\left(1\right)\)

Lại có:   \(\left(x^2+y^2\right)^2=\left(x\sqrt{x}.\sqrt{x}+y\sqrt{y}.\sqrt{y}\right)^2\le\left(x^3+y^3\right)\left(x+y\right)\le\left(x^2+y^2\right)\left(x+y\right)\)

\(\Rightarrow\)  \(x^2+y^2\le x+y\)  \(\left(2\right)\)

Mặt khác, từ  \(\left(2\right)\)  với lưu ý rằng  \(x+y\le\sqrt{2\left(x^2+y^2\right)}\) \(\left(i\right)\)và  \(x,y\in R^+\) , ta thu được:

 \(x^2+y^2\le\sqrt{2\left(x^2+y^2\right)}\) \(\Leftrightarrow\)  \(x^2+y^2\le2\)   \(\left(3\right)\)

nên do đó,  \(\left(i\right)\)  suy ra \(x+y\le\sqrt{2.2}=2\)  \(\left(4\right)\)

Từ \(\left(1\right);\left(2\right);\left(3\right)\)  và  \(\left(4\right)\)  ta có đpcm

20 tháng 12 2018

Thôi anh ơi em chịu lp 12

lp em.2=lp anh

20 tháng 12 2018

shitbo tui là con gái. Z e hok lớp 6??

Tính chụy đây còn trẻ con lém