K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2021

a: Xét ΔABM và ΔCDM có

MA=MC

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔCDM

16 tháng 12 2021

a) Xét tam giác ABM và tam giác CDM có:

+ AM = CM (cho M là trung điểm của AC).

+ BM = DM (gt).

\(\widehat{AMB}=\widehat{CMD}\) (2 góc đối đỉnh).

\(\Rightarrow\)  Tam giác ABM = Tam giác CDM (c - g - c).

b) Ta có: \(\widehat{BAM}=\widehat{DCM}\) (Tam giác ABM = Tam giác CDM).

Mà 2 góc này ở vị trí so le trong.

\(\Rightarrow\) AB // CD (dhnb).

c) Xét tam giác ABN và tam giác ECN có:

+ BN = CN (N là trung điểm của BC).

\(\widehat{ANN}=\widehat{ENC}\) 2 góc đối đỉnh).

\(\widehat{ABN}=\widehat{ECN}\) (do AB // CD).

\(\Rightarrow\) Tam giác ABN = Tam giác ECN (g - c - g).

\(\Rightarrow\) CE = AB (2 cạnh tương ứng).

Mà AB = CD (Tam giác ABM = Tam giác CDM).

\(\Rightarrow\) CE = CD (cùng = AB).

\(\Rightarrow\) C là trung điểm của DE (đpcm).

d) Xét tam giác BDE có:

+ M là trung điểm của BD (do MD = MB).

+ C là trung điểm của DE (cmt).

\(\Rightarrow\) MC là đường trung bình.

\(\Rightarrow\) MC // BE và MC = \(\dfrac{1}{2}\) BE (Tính chất đường trung bình trong tam giác).

Lại có: MC = \(\dfrac{1}{2}\) MF (do MC = MF).

\(\Rightarrow\) BE = MF.

Xét tứ giác BMEF có:

+ BE = MF (cmt).

+ BE // MF (MC // BE; C thuộc MF).

\(\Rightarrow\) Tứ giác BMEF là hình bình hành (dhnb).

\(\Rightarrow\) ME cắt BF tại trung điểm của mỗi đường (Tính chất hình bình hành).

Mà O là trung điểm của ME (gt).

\(\Rightarrow\) O là trung điểm của BF.

\(\Rightarrow\) 3 điểm B; O; F thẳng hàng (đpcm).

18 tháng 11 2021

a/

Xét tg vuông AHB có

\(\widehat{BAH}+\widehat{ABC}=90^o\)

và tg vuông ABC có

\(\widehat{ACB}+\widehat{ABC}=90^o\)

\(\Rightarrow\widehat{BAH}=\widehat{ACB}\) (1)

Ta có \(AB=\frac{AC}{2};CD=\frac{AC}{2}\Rightarrow AB=CD\) (2)

Từ (1) và (2) \(\Rightarrow\Delta AHB=\Delta CED\) (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)

b/

Ta có

\(DE\perp BC;AH\perp BC\) => DE // AH

\(DA=DC\left(gt\right)\)

\(\Rightarrow EH=EC\) (trong tam giác đường thẳng đi qua trung điểm 1 cạnh và song song với 1 cạnh thì đi qua trung điểm cạnh còn lại)

=> DE là trung tuyến của \(\Delta HDC\) mà DE cũng là đường cao của \(\Delta HDC\)

=> \(\Delta HDC\) cân tại D (trong tg đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)

c/

Xét tg vuông AHC có \(DA=DC\Rightarrow HD=\frac{AC}{2}\) (trung tuyến thuộc cạnh huyền)

\(\Rightarrow AB=HD=\frac{AC}{2}\)(1)

\(\Delta HDC\) cân \(\Rightarrow\widehat{ACB}=\widehat{DHC}\) (góc ở đáy tg cân)

Mà \(\widehat{ACB}=\widehat{BAH}\left(cmt\right)\)

\(\Rightarrow\widehat{DHC}=\widehat{BAH}\) (2)

Từ (1) và (2) \(\Rightarrow\Delta AHB=\Delta HED\) (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)

\(\Rightarrow AH=HE\)

Xét tg vuông ABD có \(IB=ID\left(gt\right)\Rightarrow AI=\frac{BD}{2}\) (trung tuyến thuộc cạnh huyền)

Xét tg vuông BDE có \(IB=ID\left(gt\right)\Rightarrow EI=\frac{BD}{2}\) (trung tuyến thuộc cạnh huyền)

\(\Rightarrow AI=EI=\frac{BD}{2}\)

Xét \(\Delta AHI\) và \(\Delta EHI\) có

\(AH=HE;AI=EI;\)HI chung \(\Rightarrow\Delta AHI=\Delta EHI\left(c.c.c\right)\)

d/

IK//BC \(\Rightarrow\widehat{DIK}=\widehat{DBC}\) (góc đồng vị) (1)

IK//BC \(\Rightarrow\widehat{EIK}=\widehat{IEB}\) (góc so le trong) (2)

Ta có \(BI=DI=\frac{BD}{2}\left(gt\right);EI=\frac{BD}{2}\left(cmt\right)\Rightarrow BI=EI=DI=\frac{BD}{2}\) => \(\Delta IBE\) cân tại I \(\Rightarrow\widehat{DBC}=\widehat{IEB}\) (3)

Từ (1)  (2) và (3)  \(\Rightarrow\widehat{DIK}=\widehat{EIK}\)

Xét \(\Delta IKD\) và \(\Delta IKE\) có

IK chung

DI=EI (cmt)

\(\widehat{DIK}=\widehat{EIK}\left(cmt\right)\)

\(\Rightarrow\Delta IKD=\Delta IKE\left(c.g.c\right)\)

18 tháng 11 2021

bạn có biết làm câu e,f nếu có thì bạn  giúp mình nốt nha

30 tháng 8 2021

1 . Ta có :

AP // BC ( gt )

góc PAC và góc BCA ở vị trí so le trong

Suy ra : góc PAC = góc BCA

Xét tam giác PNA và tam giác MNC , ta có :

góc ANP = góc MNC ( đối đỉnh )

AN = NC ( N là trung điểm AC )

góc PAN = góc NCM ( cmt )

Do đó : tam giác PNA = tam giác MNC

b . Xét tứ giác AMPC , ta có :

AP // MC ( AP // BC )

AP = MC ( tam giác PNA = tam giác MNC )

Suy ra : tứ giác AMPC là hình bình hành 

=> PC = AM

8 tháng 8 2021

\(1.\)  \(P=15\frac{1}{4}:\left(-\frac{5}{7}\right)-25\frac{1}{4}:\left(-\frac{5}{7}\right)\)

       \(=\left(15\frac{1}{4}-25\frac{1}{4}\right)\cdot\left(-\frac{7}{5}\right)\)

       \(=\left(-10\right)\cdot\left(-\frac{7}{5}\right)\)

       \(=14\)

vậy P=14

\(2.\)   \(\left(\frac{21}{10}-|x+2|\right):\left(\frac{19}{10}-\frac{7}{5}\right)+\frac{4}{5}=1\)

           \(\Rightarrow\left(\frac{21}{10}-|x+2|\right):\frac{1}{2}+\frac{4}{5}=1\)

           \(\Rightarrow\left(\frac{21}{10}-|x+2|\right)\cdot2+\frac{4}{5}=1\)

          \(\Rightarrow\left(\frac{21}{5}-|x+2|\right)+\frac{4}{5}=1\)

         \(\Rightarrow\frac{21}{5}-|x+2|=\frac{1}{5}\)

         \(\Rightarrow|x+2|=4\)

         \(\Rightarrow\orbr{\begin{cases}x+2=4\\x+2=-4\end{cases}}\)

          \(\Rightarrow\orbr{\begin{cases}x=2\\x=-6\end{cases}}\)

vậy  \(x\in\left\{2;-6\right\}\)

NM
8 tháng 8 2021

bài 1

ta có \(P=\left(15\frac{1}{4}-25\frac{1}{4}\right):\left(-\frac{5}{7}\right)=-10:\left(-\frac{5}{7}\right)=-10\times-\frac{7}{5}=14\)

2.\(\left(\frac{21}{10}-\left|x+2\right|\right):\left(\frac{19}{10}-\frac{14}{10}\right)+\frac{4}{5}=1\)

\(\Leftrightarrow\left(\frac{21}{10}-\left|x+2\right|\right):\frac{5}{10}=\frac{1}{5}\Leftrightarrow\frac{21}{10}-\left|x+2\right|=\frac{2}{5}\)

\(\Leftrightarrow\left|x+2\right|=\frac{21}{10}-\frac{2}{5}=\frac{17}{10}\Leftrightarrow\orbr{\begin{cases}x+2=\frac{17}{10}\\x+2=-\frac{17}{10}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{10}\\x=-\frac{37}{10}\end{cases}}}\)