K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2021

\(\Leftrightarrow\left\{{}\begin{matrix}a=7k\\b=7c\end{matrix}\right.\)

4a+19b=28k+133c=7(4k+19c) chia hết cho 7

 

11 tháng 11 2016

Ta có : 4a + 19b 

<=> 4a + 12b + 7b 

<=> 4( a + 3b ) + 7b

Vì a + 3b ⋮ 7 => 4 ( a + 3b ) ⋮ 7 (1)

     7b có 7 ⋮ 7 => 7b ⋮ 7 (2)

Từ (1) ; (2) => 4 ( a + 3b ) + 7b ⋮ 7

=> 4a + 19 b ⋮ 7 ( đpcm )

11 tháng 11 2016

ta có : a+3b chia hết cho 7 suy ra a và 3b chia hết cho 7 và b chia hết cho 7

suy ra 4a cũng chia hết cho 7

mà 19b cũng chia hết cho 7

k mik nha mọi người . ai mik may mắn đó.cám ơn nhiều

30 tháng 6 2017

\(23a+13b+17c=14a+9a+7b+6b+14c+3c=.\)

\(=\left(14a+7b+14c\right)+\left(9a+6b+3c\right)\)

\(=7\left(2a+b+2c\right)+3\left(3a+2b+c\right)\)

Ta có

\(7\left(2a+b+2c\right)\)chia hết cho 7

\(3a+2b+c\)chia hết cho 7 nên \(3\left(3a+2b+c\right)\)chia hết cho 7

\(\Rightarrow23a+13b+17c\)chia hết cho 7

30 tháng 6 2017

\(3a+2b+c⋮7\)

\(\Leftrightarrow30a+20b+10c⋮7\)

\(\Leftrightarrow\left(7a+7b-7c\right)+\left(23a+13b+17c\right)⋮7\)

\(\Leftrightarrow7\left(a+b-c\right)+\left(23a+13b+17c\right)⋮7\)

Ta thấy \(7\left(a+b-c\right)⋮7\)

Để \(7\left(a+b-c\right)+\left(23a+13b+17c\right)⋮7\Leftrightarrow23a+13b+17c⋮7\)(đpcm)

7 tháng 8 2016

b, a+b chia hết cho 5 nên 4a+4b chia hết cho 5

Nên ta viết: 4a+4b+15b

thấy 15b chia hết cho 5 và 4a+4b chia hết cho 5

Nên 4a+19b chia hết cho 5

17 tháng 4 2016

Ta có: 3a+2bchia hết cho 17

=>10(3a+2b)chia hết cho17

=>30a+20b chia hết cho 17

=>30a+3b+17b chia hết cho 17

=>3(10a+b)+17b chia hết cho 17

Mà 17b chia hết cho 17 nên 3(10a+b) chia hết cho 17

Lại có (3,17)=1 nên 10a+b chia hết cho 17

Vậy 10a+b chia hết cho 17

17 tháng 4 2016

Ta có: 3a+2b chia hết cho 17

Suy ra 10*(3a+2b) chia hết cho 17

Suy ra 30a+20b chia hết cho17

Suy ra 30a+3b+17b chia hết cho 17

Suy ra 3(10a+b)+17b chia hết cho 17

Mà 17b chia hết cho 17 nên (10a+b) chia hết cho 17

Lại có (3,17)=1 nên 10a+b chia hết cho 17

Vậy 10a+b chia hết cho 17

Nhớ L-I-K-E cho mình nhé

24 tháng 12 2018

Chứng minh rằng : 10a+b chia hết cho 7 hay chia hết cho 17 vậy

\(\text{Ta có :}2(10a+b)-(3a+2b)=20a+2b-3a+2b\)

                                                            \(=17a\)

Vì 17 chia hết cho 17 nên 17a chia hết cho 17

\(\Rightarrow2(10a+b)-(3a+2b)⋮17\)

Vì 3a + 2b chia hết cho 17 \(\Rightarrow2(10a+b)⋮17\)

Mà \((2;17)=1\)nên \(10a+b⋮17\)

Vậy nếu 3a + 2b chia hết cho 17 thì 10a + b chia hết cho 17

31 tháng 12 2018

Cảm ơn nhé

17 tháng 9 2018

dễ lắm bn cứ nhân lên mk chỉ một abif r cứ dựa vào mà làm nhá

25.(3a+2b)+10a+b=85a+51b chia hết cho 17

vì 3a+2b chia hết cho 17 mà 25.(3a+2b)+10a+b=85a+51b chia hết cho 17=>10a+bchia hết cho 17

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60