Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Chứng minh rằng : 10a+b chia hết cho 7 hay chia hết cho 17 vậy
\(\text{Ta có :}2(10a+b)-(3a+2b)=20a+2b-3a+2b\)
\(=17a\)
Vì 17 chia hết cho 17 nên 17a chia hết cho 17
\(\Rightarrow2(10a+b)-(3a+2b)⋮17\)
Vì 3a + 2b chia hết cho 17 \(\Rightarrow2(10a+b)⋮17\)
Mà \((2;17)=1\)nên \(10a+b⋮17\)
Vậy nếu 3a + 2b chia hết cho 17 thì 10a + b chia hết cho 17
(10a+b) - (3a +2b) = 20a + 2b - 3a -2b
= 17a
Vì 17chia hết cho17=> 17a chia hết cho 17
=> 2.(10a+b)- (3a +2b) chia hết cho 17
Vì 3a+2b chia hết cho 17 => 2(10a+b) chia hết cho 17
Mà (2,17) =1=> 10a+b chia hết cho 17
Vậy nếu 3a+2b chia hết cho 17 thì 10a +b chia hết cho 17
Ta có : 2.(10a+b) - (3a +2b) = 20a + 2b - 3a -2b
= 17a
Vì 17chia hết cho17=> 17a chia hết cho 17
=> 2.(10a+b)- (3a +2b) chia hết cho 17
Vì 3a+2b chia hết cho 17 => 2(10a+b) chia hết cho 17
Mà (2,17) =1=> 10a+b chia hết cho 17
Vậy nếu 3a+2b chia hết cho 17 thì 10a +b chia hết cho 17
cho 3a + 2b chia het cho 17 chung minyh rang 10a + b chia het cho 17
Gọi 3a+2b=x;10a+b=y
2y=2(10a+b)=20a+2b
2y-x=(20a+2b)-(3a+2b)=17a chia hết cho 17 mà 3a+2b chia hết cho 17
=>20a+2b chia hết cho 17
=>10a+b chia hết cho 17
tick nha
a, Giả sử 10a + b \(⋮\) 17 (1)
Vì 3a + 2b \(⋮\) 17 nên 8(3a + 2b) \(⋮\) 17
=> 24a + 16b \(⋮\) 17 (2)
Từ (1) và (2) suy ra (10a + b) + (24a + 16b) \(⋮\) 17
=> 10a + b + 24a + 16b \(⋮\) 17
=> (10a + 24a) + (16b + b) \(⋮\) 17
=> 34a + 17b \(⋮\) 17
=> 17(2a + b) \(⋮\) 17
=> Giả sử đúng
Vậy 10a + b \(⋮\)17 (đpcm)
b, Giả sử 10a + b \(⋮\) 17 (1)
Vì a - 5b \(⋮\) 17 nên 7(a - 5b) \(⋮\) 17
=> 7a - 35b \(⋮\) 17 (2)
Từ (1) và (2) suy ra (10a + b) + (7a - 35b) \(⋮\) 17
=> 10a + b + 7a - 35b \(⋮\) 17
=> (10a + 7a) + (b - 35b) \(⋮\) 17
=> 17a + (-34b) \(⋮\) 17
=> 17.[a + (-2)b] \(⋮\) 17
=> Giả sử đúng
Vậy 10a + b \(⋮\) 17 (đpcm)
Ta có: 3a+2bchia hết cho 17
=>10(3a+2b)chia hết cho17
=>30a+20b chia hết cho 17
=>30a+3b+17b chia hết cho 17
=>3(10a+b)+17b chia hết cho 17
Mà 17b chia hết cho 17 nên 3(10a+b) chia hết cho 17
Lại có (3,17)=1 nên 10a+b chia hết cho 17
Vậy 10a+b chia hết cho 17
Ta có: 3a+2b chia hết cho 17
Suy ra 10*(3a+2b) chia hết cho 17
Suy ra 30a+20b chia hết cho17
Suy ra 30a+3b+17b chia hết cho 17
Suy ra 3(10a+b)+17b chia hết cho 17
Mà 17b chia hết cho 17 nên (10a+b) chia hết cho 17
Lại có (3,17)=1 nên 10a+b chia hết cho 17
Vậy 10a+b chia hết cho 17
Nhớ L-I-K-E cho mình nhé