K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2021

b) 10x - x2 - 9y2 + 6y - 100 

= - (x2 - 10x + 25) - (9y2 - 6y + 1) -  74

= - (x - 5)2 - (3x - 1)2 - 74 \(\le-74< 0\)

x2 -2x+9y2-6y+2=0

=> x2 - 2x.1 + 12 + (3y)2 - 2.3y.1 + 12 = 0

=> ( x - 1 )2 + ( 3y - 1 )2 = 0

Vì ( x -1 )2 \(\ge\)0

( 3y - 1 )2 \(\ge\)0

=> ( x - 1 )2 + ( 3y - 1 ) 2 \(\ge\)0

Dấu " = "  xảy ra khi :

\(\orbr{\begin{cases}x-1=0\\3y-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\3y=1\end{cases}}}\Leftrightarrow\orbr{\begin{cases}x=1\\y=\frac{1}{3}\end{cases}}\)

Vậy \(x=1\) và \(y=\frac{1}{3}\)

Study well 

1 tháng 8 2019

\(x^2-2x+9y^2-6y+2=0\)

\(\Rightarrow x^2-2x+1+\left(3y\right)^2-6y+1=0\)

\(\Rightarrow\left(x-1\right)^2+\left(3y-1\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(3y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=\frac{1}{3}\end{cases}}}\)

Vậy.......

10 tháng 10 2019

      a)     x+ y- 2x + 4y + 5 = 0

\(\Leftrightarrow\)( x- 2x + 1 ) + ( y2 + 4y + 4 ) = 0

\(\Leftrightarrow\)( x - 1 )2 + ( y + 2 )= 0

\(\Rightarrow\)x - 1 = 0 và y + 2 = 0

\(\Rightarrow\)x = 1 và y = - 2

Vậy : x = 1 và y = - 2

b) 4x+ 9y2 - 4x - 6y + 2 = 0

\(\Leftrightarrow\)[ ( 2x )2 - 4x + 1 ] + [ ( 3y )- 6y + 1 ] = 0

\(\Leftrightarrow\)( 2x - 1 )+ ( 3y - 1 )2 = 0

\(\Rightarrow\)2x - 1 = 0 và 3y - 1 = 0

\(\Rightarrow\)x = 1 / 2 và y = 1 / 3

Vậy : x = 1 / 2 và y = 1 / 3

11 tháng 10 2019

a) \(x^2+y^2-2x+4y+5=0\)

    \(x^2+y^2-2x+4y+1+4=0\)

    \(\left(x^2-2x+1\right)\left(y^2+4y+4\right)=0\)

     \(\left(x-1\right)^2\left(y+2\right)^2=0\)

     \(\Rightarrow\orbr{\begin{cases}x-1=0\\y+2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\y=-2\end{cases}}\)

b) \(4x^2+9y^2-4x-6y+2=0\)

    \(\left(4x^2-4x+1\right)\left(9y^2-6y+1\right)=0\)

    \(\left(2x-1\right)^2\left(3y-1\right)^2=0\)

    \(\Rightarrow\orbr{\begin{cases}2x-1=0\\3y-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{3}\end{cases}}}\)

    

20 tháng 10 2017

= x2+2x+1+y2+6y+9

= (x+1)2+(y+3)2

Vì (x+1)>=0 với mọi x

(y+3)2>=0 với mọi y

Do đó (x+1)2+(y+3)2>= với mọi x,y

Vậy....

20 tháng 10 2017

(x^2+2x+1)+(y^2+6y+9)

(x+1)^2+(y+3)^2 > hoặc = 0

tk mk nha

1 tháng 8 2019

Ta có:

\(x^2+2x+9y^2-6y+3=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)+\left(9y^2-6y+1\right)+1=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(3y-1\right)^2+1=0\)

\(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\\\left(3y-1\right)^2\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x+1\right)^2+\left(3y-1\right)^2\ge0\)

\(\Rightarrow\left(x+1\right)^2+\left(3y-1\right)^2+1\ge1>0\)

Vậy không tồn tại x và y để thỏa mãn đề bài...!

AH
Akai Haruma
Giáo viên
9 tháng 9 2018

Lời giải:

Ta có \(2x^2-6xy+9y^2-6x+9=0\)

\(\Leftrightarrow (x^2-6xy+9y^2)+(x^2-6x+9)=0\)

\(\Leftrightarrow (x-3y)^2+(x-3)^2=0\)

\((x-3y)^2; (x-3)^2\geq 0, \forall x,y\in\mathbb{R}\), do đó để \((x-3y)^2+(x-3)^2=0\) thì \(\left\{\begin{matrix} (x-3y)^2=0\\ (x-3)^2=0\end{matrix}\right.\Leftrightarrow x=3; y=1\)

Vậy........

9 tháng 9 2018

2x2 - 6xy + 9y2 - 6x + 9 = 0

<=> ( x2 - 6xy + 9y2 ) + ( x2 - 6x + 9 ) = 0

<=> ( x - 3y )2 + ( x - 3 )2 = 0

<=> x = 3; y = 1

Vậy x = 3 và y = 1