Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a)x378y chia hết cho 8 =>78y chia hết cho 8 (vì số có 3 chữ số cuối chia hết cho 8 thì số đó chia hết cho 8)
=>y=4
=>x3784 chia hết cho 9 => (x+3+7+8+4) chia hết cho 9
=> (x+22) chia hết cho 9
=>x=5
vậy số cần tìm là 53784
1.b)3x23y chia hết cho 5 => y chia hết cho 5
=>y= 0 hoặc 5
TH1.1: nếu y=0,x là chẵn
=>3x230 chia hết cho 11=>(3+2+0)-(x+3) hoặc (x+3)-(3+2+0) chia hết cho 11 (vì tổng các chữ số hàng chẵn - tổng các chữ số hàng lẻ chia hết cho 11 thì số đó chia hết cho 11 hoặc ngược lại)
=>5-(x+3) hoặc (x+3)-5 chia hết cho 11
ta xét điều kiện (x+3)-5 chia hết cho 11 vì 5-(x+3)>11
nếu (x+3)-5=0 thì x=2(chọn)
nếu (x+3)-5=11 thì x=13(loại)
nếu (x+3)-5>11 mà chia hết cho 11 thì x >2 (> số có 1 chữ số)
vậy số cần tìm là 32230
K CHO MÌNH NHÉ !!!!!!
S = 5⁰ + 5¹ + 5² + ... + 5²⁰²³
= (5⁰ + 5¹) + (5² + 5³) + ... + (5²⁰²² + 5²⁰²³)
= 6 + 5².(1 + 5) + ... + 5²⁰²².(1 + 5)
= 6 + 5².6 + ... + 5²⁰²².6
= 6.(1 + 5² + ... + 5²⁰²²) ⋮ 6
Vậy S ⋮ 6
--------
Số số hạng của S:
2023 - 0 + 1 = 2024 (số)
2024 : 3 dư 2 nên khi nhóm các số hạng của S theo nhóm 3 thì dư 2 số hạng
Ta có:
S = 5⁰ + 5¹ + 5² + 5³ + ... + 5²⁰²³
= 5⁰ + 5¹ + (5² + 5³ + 5⁴) + (5⁵ + 5⁶ + 5⁷) + ... + (5²⁰²¹ + 5²⁰²² + 5²⁰²³)
= 6 + 5².(1 + 5 + 5²) + 5⁵.(1 + 5 + 5²) + ... + 5²⁰²¹.(1 + 5 + 5²)
= 6 + 5².31 + 5⁵.31 + ... + 5²⁰²¹.31
= 6 + 31.(5² + 5⁵ + ... + 5²⁰²¹)
Do 31.(5² + 5⁵ + ... + 5²⁰²¹) ⋮ 31
6 + 31.(5² + 5⁵ + ... + 5²⁰²¹) chia 31 dư 6
Vậy S chia 31 dư 6
------------
Sửa đề:
Tìm số tự nhiên n để 4S - 25² = -1
S = 5⁰ + 5¹ + 5² + 5³ + ... + 5²⁰²³
5S = 5 + 5² + 5³ + 5⁴ + ... + 5²⁰²⁴
⇒ 4S = 5S - S
= (5 + 5² + 5² + 5³ + ... + 5²⁰²⁴) - (1 + 5¹ + 5² + 5³ + ... + 5²⁰²³)
= 5²⁰²⁴ - 1
⇒ 4S - 25²ⁿ = -1
⇒ 5²⁰²⁴ - 1 - (5²)²ⁿ = -1
⇒ 5²⁰²⁴ - 5⁴ⁿ = -1 + 1
⇒ 5⁴ⁿ = 5²⁰²⁴
⇒ 4n = 2024
⇒ n = 2024 : 4
⇒ n = 506
\(S=\left(5^0+5^1\right)+\left(5^2+5^3\right)+...+\left(5^{2022}+5^{2023}\right)\\ =6+5^2\left(1+5\right)+...+5^{2022}\left(1+5\right)\\ =6+5^2.6+...+5^{2022}.6\\ =6\left(1+5^2+...+5^{2022}\right)⋮6\)
\(S=\left(5^0+5^1+5^2\right)+...+\left(5^{2021}+5^{2022}+5^{2023}\right)\\ =31+...+5^{2021}\left(1+5+5^2\right)\\ =31\left(1+...+5^{2021}\right)⋮31\)
=> Dư : 0
\(5S=5^1+5^2+5^3+5^4+...+5^{2024}\\ =>5S-S=4S=5^{2024}-1\)
Mà : \(4S-25^{2n}=1\\ =>5^{2024}-1-25^{2n}=1\\ =>5^{2024}-25^{2n}=2\)
Bạn xem lại đề nhé
Câu 1 :
a) 356abc chia hết cho 5;7 và 9
\(\Rightarrow\)356abc chia hết cho BCNN (5,7,9)
\(\Rightarrow\)356abc chia hết cho 315
Ta thấy : 356999 chia cho 315 dư 104. Do đó :
356999 - 104 = 356895 chia hết cho 315
356895 - 315 = 356580 chia hết cho 315
356580 - 315 = 356265 chia hết cho 315
Đó là 3 số cần tìm.
b) S= 5 + 52 + 53 + ........ + 52013
Tổng S có 2013 có số, nhóm 3 số vào 1 nhóm thì vừa hết
Ta có :
S = (5 + 52 + 53) + (54 + 55 + 56) +........+ (52011 + 52012 + 52013)
S = (5 + 52 + 53) + 53(5 + 52 + 53) + ......+ 52010(5 + 52 + 53)
S = 5(1 + 5 + 52) + 54(1 + 5 + 52) + .......+ 52011(1 + 5 + 52)
S = 5 . 31 + 54 . 31 + .......+ 52011 . 31
S = 31(5 + 54 + ......+ 52011) chia hết cho 31
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.