Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Vì 8 < 9 => 8100 < 9100
=> 2300 < 3200
b) Hình như đề sai Phải so sánh với 3.2410 chứ bạn
Ta có: \(3.24^{10}=3.\left(3.2^3\right)^{10}=3^{11}.2^{30}=3^{11}.4^{15}< 4^{15}.4^{15}=4^{30}\)
\(\Rightarrow2^{30}+3^{30}+4^{30}>3.24^{10}\)
Ta có 2*300 = (2*3)*100 = 8*100
3*200 = (3*2)*100 = 9*100
=> 2*300 < 3*200
a)\(2S=2\left(1+\frac{1}{2}+...+\frac{1}{2^{100}}\right)\)
\(2S=2+1+...+\frac{1}{2^{99}}\)
\(2S-S=\left(2+1+...+\frac{1}{2^{99}}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^{100}}\right)\)
\(S=2-\frac{1}{2^{100}}\)
phần b tương tự
a. S=1+1/2+1/2^2+1/2^3+...+1/2^100
2S=2+1+1/2+1/2^2+...+1/2^99
2S-S=(2+1+1/2+1/2^2+...+1/2^99)-(1+1/2+1/2^2+1/2^3+...+1/2^100)
S=2-1/2^100
S=2^101-1/2^100
a,B=3+32+33+34+...+3300
=>3B=32+33+34+...+3301
=>3B-B=(32+33+34+...+3301)-(3+32+33+34+...+3300)
=>2B=3301-3
=>B=3101-3/2
b,ta có:2B+3=3101-3+3=3101=3n
=>n=101
vậy n=101
l-i-k-e cho mình nha
Em muốn làm gì với A?
A = 3 + 32 + 33 + 34 + ... + 3300
3A = 32 + 33 + 34 + ... + 3301
3A - A = 32 + 33 + 34 + ... + 3301 - (3 + 32 + 33 + 34 + ... + 3300)
2A = 32 + 33 + 34 + ... + 3301 - 3 - 32 - 33 - 34 - ... - 3300
2A = (32 - 32) + (33 - 33) + (34 - 34) + ... + (3300 - 3300) + (3301 - 3)
2A = 0 + 0 + 0 +...+ 0 + 3301 - 3
2A = 3101 - 3
A = \(\dfrac{3^{101}-3}{2}\)