Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) |x + 4| = 17
=> \(\orbr{\begin{cases}x+4=17\\x+4=-17\end{cases}}\)
=> \(\orbr{\begin{cases}x=13\\x=-21\end{cases}}\)
b) (7 - x) - (25 + 7) = -25
=> (7 - x) - 32 = -25
=> 7 - x = -25 + 32
=> 7 - x = 7
=> x = 7 - 7
=> x = 0
c. |x + 5| = |-7|
=> |x + 5 | = 7
=> \(\orbr{\begin{cases}x+5=7\\x+5=-7\end{cases}}\)
=> \(\orbr{\begin{cases}x=2\\x=-12\end{cases}}\)
2) 4 . (-5)2 + 2 . (-15)
= 2. 2 . 25 + 2 . (-15)
= 2.(2 . 25 - 15)
= 2 . 35
= 70
\(|x|-\frac{3}{4}=\frac{5}{3}\)
\(\left|x\right|=\frac{5}{3}-\frac{3}{4}\)
\(\left|x\right|=\frac{20}{12}-\frac{9}{12}\)
\(\left|x\right|=\frac{11}{12}\)
\(\Rightarrow\orbr{\begin{cases}\left|x\right|=\frac{11}{12}\\\left|x\right|=\frac{-11}{12}\end{cases}}\)
\(|x|-\frac{3}{4}=\frac{5}{3}\)
\(|x|=\frac{5}{3}+\frac{3}{4}\)
\(|x|=\frac{20}{12}+\frac{9}{12}\)
\(|x|=\frac{29}{12}\)
\(\Rightarrow x=\frac{29}{12}\)hoặc \(x=\frac{-29}{12}\)
các bn lm đến đâu cx dc miễn là lm hộ mk cái ạ, ai đang lm vào nhắn tin vs mk để mk bít nha
a; \(-\dfrac{8}{3}+\dfrac{7}{5}-\dfrac{71}{15}< x< -\dfrac{13}{7}+\dfrac{19}{14}-\dfrac{7}{2}\)
-\(\dfrac{19}{15}\) - \(\dfrac{71}{15}\) < \(x\) < -\(\dfrac{1}{2}\) - \(\dfrac{7}{2}\)
-6 < \(x\) < -4
vì \(x\) \(\in\) Z nên \(x\) = -5
cảm ơn bn nhưng làm thêm giùm mk với chứ bây giờ mk chưa k cho bn đc
\(\frac{2}{3}x=\frac{5}{4}+\frac{1}{2}x\)
\(\Rightarrow\frac{2}{3}x-\frac{1}{2}x=\frac{5}{4}\)
\(\frac{1}{6}x=\frac{5}{4}\)
\(x=\frac{5}{4}:\frac{1}{6}\)
x = 15/2
a) \(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{31.34}\)
\(A=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{31}-\frac{1}{34}\right)\)
\(A=\frac{2}{3}.\left(1-\frac{1}{34}\right)\)
\(A=\frac{2}{3}\cdot\frac{33}{34}=\frac{11}{17}\)
b) \(B=\frac{3}{1}+\frac{3}{3}+\frac{3}{6}+...+\frac{3}{210}\)
\(B=\frac{6}{2}+\frac{6}{6}+\frac{6}{12}+...+\frac{6}{420}\) ( 3/1 = 6/2; 6/6=3/3;..)
\(B=\frac{6}{1.2}+\frac{6}{2.3}+\frac{6}{3.4}+...+\frac{6}{20.21}\)
\(B=6.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{20}-\frac{1}{21}\right)\)
\(B=6.\left(1-\frac{1}{21}\right)=6\cdot\frac{20}{21}=\frac{40}{7}\)
\(a,\dfrac{7}{12}-\left(x+\dfrac{7}{10}\right):\dfrac{6}{5}=\dfrac{5}{4}\)
\(\Leftrightarrow\dfrac{7}{12}-x-\dfrac{7}{10}:\dfrac{6}{5}=\dfrac{5}{4}\)
\(\Leftrightarrow\dfrac{7}{12}-x-\dfrac{7}{12}=\dfrac{5}{4}\)
\(\Leftrightarrow\dfrac{7}{12}-x=\dfrac{5}{4}+\dfrac{7}{12}\)
\(\Leftrightarrow\dfrac{7}{12}-x=\dfrac{11}{6}\)
\(\Leftrightarrow x=\dfrac{7}{12}-\dfrac{11}{6}\)
\(\Leftrightarrow\dfrac{-5}{4}\)
\(A=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\)
\(\Rightarrow A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\)
\(\Rightarrow A=1-\frac{1}{100}=\frac{99}{100}\)
\(A=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\)
\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
Vậy\(A=\frac{99}{100}\)