Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : k là ƯCLN của 7n + 10 và 5n + 7
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k
Hay 5(7n + 10 ) và 7(5n + 7 )
35n + 50 và 35n + 49 chia hết cho k
=> ĐPCM
Hai bài kia bạn làm tương tư nhé , chúc may mắn
\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)
\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)
Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3
Giả sử: 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3
Giả sử: 7n+2 chia hết cho 3
=> 7n+2-9 chia hết cho 3
=>.........
Vậy với n khác 3k+1;3k+2 thì thỏa mãn
Gọi d = ƯCLN(2n + 1; 3n + 1)
⇒⎧⎨⎩2n+1⋮d3n+1⋮d⇒{2n+1⋮d3n+1⋮d ⇒⎨⎩3(2n+1)⋮d2(3n+1)⋮d⇒{3(2n+1)⋮d2(3n+1)⋮d ⇒⎧⎨⎩6n+3⋮d6n+2⋮d⇒{6n+3⋮d6n+2⋮d
⇒⇒ (6n + 3) – (6n + 2) ⋮⋮ d
⇒⇒1 ⋮⋮d
⇒⇒d = 1
Do đó: ƯCLN(2n + 1; 3n + 1) = 1
Vậy hai số 2n + 1 và 3n + 1 là hai số nguyên tố cùng nhau.
bạn làm giống thế này nhé xin lỗi vì mình ko cho kq nhưng bạn phải tự làm mới hiểu được
a) Đặt UCLN ( n + 1 ; n + 2 ) = d
=> n + 1 chia hết cho d ; n + 2 chia hết cho d
=> ( n + 2 ) - ( n + 1 ) chia hết cho d
=> n + 2 - n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> n + 1 và n + 2 là 2 số nguyên tố cùng nhau ( đpcm )
b) Đặt UCLN ( 2n + 5 ; n + 2 ) = d
=> 2n + 5 chia hết cho d ; n + 2 chia hết cho d
=> 2n + 5 chia hết cho d ; 2 ( n + 2 ) chia hết cho d
=> 2n + 5 chia hết cho d ; 2n + 4 chia hết cho d
=> ( 2n + 5 ) - ( 2n + 4 ) chia hết cho d
=> 2n + 5 - 2n - 4 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n + 5 và n + 2 là 2 số nguyên tố cùng nhau ( đpcm )
Lời giải:
$a=1+2+...+n=\frac{n(n+1)}{2}$
$b=2n+1$
Giả sử $a,b$ không nguyên tố cùng nhau. Gọi $p$ là ước nguyên tố lớn nhất của $a,b$.
$\Rightarrow a=\frac{n(n+1)}{2}\vdots p; b=2n+1\vdots p$
Có:
$\frac{n(n+1)}{2}\vdots p\Rightarrow n\vdots p$ hoặc $n+1\vdots p$
Nếu $n\vdots p$. Kết hợp với $2n+1\vdots p\Rightarrow 1\vdots p\Rightarrow p=1$ (vô lý)
Nếu $n+1\vdots p$. Kết hợp với $2n+1\vdots p\Rightarrow 2(n+1)-(2n+1)\vdots p$
$\Rightarrow 1\vdots p\Rightarrow p=1$ (vô lý)
Vậy điều giả sử là sai. Tức là $a,b$ là hai số nguyên tố cùng nhau.
1. gọi d là ucln 2n+1,3n+4.
Hai số này cùng chia hết d
suy ra 3(2n+1)chia hết d
2(3n+4) chia hết d
=6n+3 chia hết d
6n+8 chia hết d
suy ra (6n+8)-(6n+3) chia hết d
suy ra 5 chia hết d
Suy ra d có thể bằng 1 hoặc 5
Mà 2n chia hết 5
1 không chia hết 5
Suy ra d=5 ( loại)
Suy ra ĐPCM
2.Đề bài thiếu dữ kiện nhé bạn.
hvrfyht
giúp mình đi