Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D = 1.2 + 2.3+ 3.4 +...+ 99.100
=>3D=1.2.3+2.3.3+3.4.3+...+99.100.3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+....+99.100.(101-98)
=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
=99.100.101-0.1.2
=99.100.101
=999900
=>D=999900:3=333300
Dn = 1.2 + 2.3 + 3.4 +...+ n (n +1)
=>3Dn=1.2.3+2.3.3+3.4.3+...+n(n+1).3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]
=1.2.3-0.1.2+2.3.4-1.2.3+2.3.4-2.3.4+....+n(n+1)(n+2)-(n-1)n(n+1)
=n.(n+1).(n+2)-0.1.2
=n.(n+1)(n+2)
=>Dn=n.(n+1)(n+2):3
=>điều cần chứng minh
Lời giải:
$A=1.2+2.3+3.4+...+(n-1)n$
$3A=1.2(3-0)+2.3(4-1)+3.4(5-2)+....+(n-1)n[(n+1)-(n-2)]$
$=[1.2.3+2.3.4+3.4.5+...+(n-1)n(n+1)]-[1.2.3+2.3.4+....+(n-2)(n-1)n]$
$=(n-1)n(n+1)$
$\Rightarrow A=\frac{n(n-1)(n+1)}{3}$
1/A = 1 + 2 + 3 + 4 +.......+ n
Hay A = n + ... + 4 + 3 + 2 + 1 (Viết ngược lại )
=> A + A = (1 + n) + ... + (n + 1) Có n cặp
=> 2.A = (1 + n).n
=> A = (1 + n).n/2 => Đpcm
2/ B=1.2+2.3+3.4.....+(n-1).n
ta có
3.B=1.2.(3-0)+2.3.(4-1)+3.4.(5 -2)...+ (n-1).n . ((n+1) - (n-2))
3.B=1.2.3+2.3.4+3.4.5+...+ (n-1) . n. (n+1) - 0.1.2 -1.2.3 -2.3.4 -3.4.5 -...(n-1)(n+1) n
3A=n.(n-1).(n+1)
A=1/3.n.(n-1).(n+1)
Lời giải:
$A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{n(n+1)}$
$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{(n+1)-n}{n(n+1)}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}$
$=1-\frac{1}{n+1}=\frac{n}{n+1}$
Ta có đpcm.
\(A=1.2+2.3+3.4+...+n\left(n+1\right)\)
\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+...+n\left(n+1\right).3\)
\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n\left(n+1\right).\)\(\left(n+2-n+1\right)\)
\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+n\left(n+1\right)\left(n+2\right)\)\(-\left(n-1\right)n\left(n+1\right)\)
\(\Rightarrow3A=n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Vì A là số tự nhiên nên A chia hết cho 3 (đpcm)
Câu a: Không hỏi nên không trả lời
Câu b:Gọi d là ƯCLN của n và n+1
Ta có: n chia hết cho d
n+1 chia hết cho d
=>(n+1)-n chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy phân số n/n+1 là phân số tối giản
Câu c: \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
=\(1-\frac{1}{50}\)
Vì: \(1-\frac{1}{50}\)<\(1\)
Vậy:\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)<\(1\)
a) Đặt A = 1.2 + 2.3 + ........ + (n-1)n
3A = 1.2.3 + 2.3.(4-1) + .... + (n-1)n[(n+1)-(n-2)]
3A = 1.2.3 + 2.3.4 - 1.2.3 + .... + (n-1)n(n+1) - (n-2)(n-1)n
3A = (1.2.3 - 1.2..3) + ... + (n-1)n(n+1)
A = \(\frac{\left(n-1\right)n\left(n+1\right)}{3}\)
b) Đặt B = 12 + 22 + ..... + n2
B = 1(2 - 1) + 2(3 - 1) + ..... + n[(n + 1) - 1]
B = 1.2 + 2.3 + .......... + n(n + 1) - (1+2+3+....+n)
B = A - \(\frac{n\left(n+1\right)}{2}\)
Ta có: \(\frac{1}{1.2}=\frac{3}{1.2.3}\) ;\(\frac{1}{1.2+2.3}=\frac{3}{2.3.4}\); \(\frac{1}{2.3+3.4}=\frac{3}{3.4.5}\); ......;\(\frac{1}{1.2+2.3+3.4+...+n\left(n+1\right)}=\frac{3}{n\left(n+1\right)\left(n+2\right)}\)
=> \(S=\frac{3}{1.2.3}+\frac{3}{2.3.4}+\frac{3}{3.4.5}+...+\frac{3}{n\left(n+1\right)\left(n+2\right)}\)
=> \(\frac{2S}{3}=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\)
Ta lại có: \(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3}\); \(\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4}\); \(\frac{2}{3.4.5}=\frac{1}{3.4}-\frac{1}{4.5}\);....;\(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
=> \(\frac{2S}{3}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
=> \(\frac{2S}{3}=\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)=> \(S=\frac{3}{4}-\frac{3}{2\left(n+1\right)\left(n+2\right)}< \frac{3}{4}\)
=> \(S< \frac{3}{4}\)
a, Biểu thức A có \(5\inℤ,n\inℤ\). Để A là phân số thì ta có điều kiện là :\(n-1\ne0\Rightarrow n\ne-1\)
\(A=\frac{5}{n-1}\Rightarrow n-1\inƯ(5)\)
Để A là số nguyên \(\Leftrightarrow n-1\in\left\{\pm1;\pm5\right\}\)
n - 1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
b, Gọi d là ƯCLN\((n,n+1)\)
Ta có : \(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
\(\Rightarrow(n+1)-n⋮d\)
\(\Rightarrow n-n+1⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy : ....
c, \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}< 1-\frac{1}{2}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}=\frac{49}{50}< \frac{50}{50}=1\)
\((đpcm)\)
\(A=1.2+2.3+3.4+.......+\left(n-1\right).n\)
\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+......+\left(n-1\right).n.3\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+.....+\left(n-1\right).n.\left[\left(n+1\right)-\left(n-2\right)\right]\)
\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+......+\left(n-1\right).n\left(n+1\right)-\left(n-1\right).n\left(n-2\right)\)
\(=\left(n-1\right).n.\left(n+1\right)\)
\(\Rightarrow A=\frac{\left(n-1\right).n.\left(n+1\right)}{3}\)( đpcm )
lol why lol