K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2016

1/2 = 1/1.2 ; 1/2^2 < 1/1.2 ; 1/2^3 < 1/2.3 ; .... ; 1/2^100 < 1/99.100

=> 1/2 + 1/2^2 + 1/2^3 + .... + 1/2^100 > 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/99.100 = 1/1 - 1/2 + 1/2 - 1/3 + ... + 1/99 - 1/100

=> 1/2 + 1/2^2 + 1/2^3 + ... + 1/2^100 > 1 - 1/100 = 99/100

mà 99/100 < 1

=> A < 1

22 tháng 2 2016

Ta có : 

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

=> \(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

=> \(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

=> \(A=1-\frac{1}{2^{100}}\)

Ta thấy : \(\frac{1}{2^{100}}>0\)   =>  \(1-\frac{1}{2^{100}}<1\)   =>  \(A<1\)

AH
Akai Haruma
Giáo viên
25 tháng 10 2024

a/

$A-3=\frac{2003}{2004}+\frac{2004}{2005}+\frac{2005}{2003}-3$

$=(1-\frac{1}{2004})+(1-\frac{1}{2005})+(1+\frac{2}{2003})-3$

$=\frac{2}{2003}-\frac{1}{2004}-\frac{1}{2005}$

$=(\frac{1}{2003}-\frac{1}{2004})+(\frac{1}{2003}-\frac{1}{2005})$

$>0+0=0$

$\Rightarrow A>3$

AH
Akai Haruma
Giáo viên
25 tháng 10 2024

b/

$B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2015^2}$

$< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}$

$=1-\frac{1}{2015}<1$

24 tháng 6 2020

A = 1 + 31 + 32 + 33 + ... + 320

3A = 3( 1 + 31 + 32 + 33 + ... + 320 )

3A = 3 + 32 + 33 + 34 + ... + 321

3A - A = ( 3 + 32 + 33 + 34 + ... + 321 ) - ( 1 + 31 + 32 + 33 + ... + 320 )

=> 2A = 3 + 32 + 33 + 34 + ... + 321 - 1 - 31 - 32 - 33 + ... - 320

2A = 2 + 321

A = \(\frac{2+3^{21}}{2}\); B = \(\frac{3^{21}}{2}\)

Vì 2 + 321 > 321

=> \(\frac{2+3^{21}}{2}\)\(\frac{3^{21}}{2}\)hay A > B 

24 tháng 6 2020

A=1+ 31+32+33+...+320

3A = 3 + 3^2 + 3^3 + ... + 3^21

2A = 3^21 - 1

A = 3^21 - 1/2

3^21-1 < 3^21

=> 3^21-1/2 < 3^21/2

=> A < B

10 tháng 9 2015

Ta có: 100..........0000 = 10100 

2300 = (23)100 = 8100

Mà 8 > 10 => 10100 > 8100

Vậy 10000.........0000 (có 100 chữ số 0) > 2300

 

26 tháng 12 2017

b) Ta có :

D = 1030 = ( 103 )10 = 100010

B = 2100 = ( 210 )10 = 102410

Mà 100010 < 102410 => 1030 < 2100 hay D < B

Vậy D < B

26 tháng 12 2017

a) Ta có :

A = 20 + 21 + ... + 22010

=> 2A = 21 + 22 + ... + 22011

=> A = ( 21 + 22 + ... + 22011 ) - ( 20 + 21 + ... + 22010 )

=> A = 22011 - 2= 22011 - 1

Mà B = 22011 - 1 => A = B

Vậy A = B

23 tháng 4 2019

\(A=\left[\frac{1}{2^2}-1\right]\left[\frac{1}{3^2}-1\right]\left[\frac{1}{4^2}-1\right]\cdot...\cdot\left[\frac{1}{100^2}-1\right]\)

\(=\frac{-3}{2^2}\cdot\frac{-8}{3^2}\cdot\frac{-15}{4^2}\cdot...\cdot\frac{-9999}{100^2}\)

\(=\frac{-1\cdot3}{2\cdot2}\cdot\frac{-2\cdot4}{3\cdot3}\cdot\frac{-3\cdot5}{4\cdot4}\cdot...\cdot\frac{-99\cdot101}{100\cdot100}\)

\(=\frac{-1\cdot2\cdot3\cdot...\cdot99}{2\cdot3\cdot...\cdot100}\cdot\frac{3\cdot4\cdot5\cdot...\cdot101}{2\cdot3\cdot...\cdot100}\)

\(=-\frac{1}{100}\cdot\frac{101}{2}=-\frac{101}{200}\)

Mà \(-\frac{101}{200}< -\frac{1}{2}\)

nên \(A< -\frac{1}{2}\)

23 tháng 4 2019

\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)

\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{10000}-1\right)\)

\(A=\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}...\frac{-9999}{10000}\)

\(A=\frac{-1.3}{2.2}.\frac{-2.4}{3.3}.\frac{-3.5}{4.4}...\frac{-99.101}{100.100}\)

\(A=\frac{\left(-1\right)\left(-2\right)\left(-3\right)...\left(-99\right)}{2.3.4...100}.\frac{3.4.5...101}{2.3.4...100}\)

\(A=-\frac{1}{100}.\frac{101}{2}\)

\(A=-\frac{101}{200}\)

\(\text{Vậy A=}-\frac{101}{200}\)