Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ 40^20=40^2.10=1600^10
3^30=3^3.10=27^10
vì 1600^10>27^10 nên 40^20>3^30
a) 40^20=(4^2)^10=16^10
30^30=(3^3)^10=27610
Vì 16<27=>16^10<27^10 hay 4^20<3^30
b) mk chịu
c) Đặt A= 1/3+1/3^2+1/3^3+...+1/3^99
=>3A=3( 1/3+1/3^2+1/3^3+...+1/3^99)
=>3A=1+1/3+1/3^2+...+1/3^98
=>3A-A=(1+1/3+1/3^2+...+1/3^98)-(1/3+1/3^2+1/3^3+...+1/3^99)
=>2A=1-1/3^99
=>A=(1-1/3^99)/2
=>A=1/2 - (1/3^99)/2 < 1/2=>a<1/2
1,2 dễ ko làm
3,
S = 1 + 2 + 22 + 23 + ... + 29
2S = 2 + 22 + 23 + 24 + ... + 210
2S - S = ( 2 + 22 + 23 + 24 + ... + 210 ) - ( 1 + 2 + 22 + 23 + ... + 29 )
S = 210 - 1
Mà 5 . 28 = ( 1 + 22 ) . 28 = 28 + 210 > 210 > 210 - 1
Vậy S < 5 . 28
P = 1 + 3 + 32 + 33 + ... + 320
3P = 3 + 32 + 33 + 34 + ... + 321
3P - P = ( 3 + 32 + 33 + 34 + ... + 321 ) - ( 1 + 3 + 32 + 33 + ... + 320 )
2P = 321 - 1
P = ( 321 - 1 ) : 2 < 321
Vậy P < 321
a) 3^500=(3^5)^100=243^100; 7^300=(7^3)^100=343^100
Vì 243<343 nên 3^500<7^300
k nha
a) UCLN(500,300) là 100
500=100x5
300=100x3
3^500=(3x3x3x3x3)^100=243^100
7^300=(7x7x7)^100=343^100
vì 243^100<343^100 nên 3^500<7^300
bạn làm tương tự với những bài còn lại nha
\(a;5^{23}=5\cdot5^{22}< 6\cdot5^{22}\Rightarrow5^{23}< 6\cdot5^{22}\)
\(b;7\cdot2^{13}< 8\cdot2^{13}=2^3\cdot2^{13}=2^{15}\)
\(c;21^{15}=3^{15}\cdot7^{15}>3^{15}\cdot7^{14}=27^5\cdot49^8\)
\(d;199^{20}< 200^{20}=10^{40}\cdot2^{20}< 10^{45}\cdot2^{15}=2000^{15}< 2001^{15}\)
\(e;3^{39}=9^{13}< 11^{13}< 11^{21}\)
A = 1 + 31 + 32 + 33 + ... + 320
3A = 3( 1 + 31 + 32 + 33 + ... + 320 )
3A = 3 + 32 + 33 + 34 + ... + 321
3A - A = ( 3 + 32 + 33 + 34 + ... + 321 ) - ( 1 + 31 + 32 + 33 + ... + 320 )
=> 2A = 3 + 32 + 33 + 34 + ... + 321 - 1 - 31 - 32 - 33 + ... - 320
2A = 2 + 321
A = \(\frac{2+3^{21}}{2}\); B = \(\frac{3^{21}}{2}\)
Vì 2 + 321 > 321
=> \(\frac{2+3^{21}}{2}\)> \(\frac{3^{21}}{2}\)hay A > B
A=1+ 31+32+33+...+320
3A = 3 + 3^2 + 3^3 + ... + 3^21
2A = 3^21 - 1
A = 3^21 - 1/2
3^21-1 < 3^21
=> 3^21-1/2 < 3^21/2
=> A < B