Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=m^2+8m+16-4m^2-8m+4=20-3m^2\ge0\Leftrightarrow-\sqrt{\frac{20}{3}}\le m\le\sqrt{\frac{20}{3}}\)
\(2.x_0=m+4+\sqrt{20-3m^2}\ge-\sqrt{\frac{20}{3}}+4\Leftrightarrow Minx_0=\frac{-\sqrt{\frac{20}{3}}+4}{2}=2-\sqrt{\frac{5}{3}}\)
\(2.x_0=m+4-\sqrt{20-3m^2}\le\sqrt{\frac{20}{3}}+4\Leftrightarrow Maxx_0=\frac{\sqrt{\frac{20}{3}}+4}{2}=2+\sqrt{\frac{5}{3}}\)
Ta có
\(\left(x-y\right)^2\ge0\)
\(\Rightarrow x^2-2xy+y^2\ge0\)
\(\Rightarrow x^2+y^2\ge2xy\)
\(\Rightarrow x^2+y^2+x^2+y^2\ge x^2+y^2+2xy\)
\(\Rightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Rightarrow x^2+y^2\ge2\)
Dấu " = " xay ra khi x=y=1
Vậy MINS=2 khi x=y=1
Đặt \(A=x^2-x\sqrt{y}+x+y-\sqrt{y}+1\left(y\ge0\right)\Rightarrow4A=4x^2-4x\sqrt{y}+4x+4y-4\sqrt{y}+4\)
\(4A=\left(2x\right)^2-4x\left(\sqrt{y}-1\right)+\left(\sqrt{y}-1\right)^2-\left(\sqrt{y}-1\right)^2+4y-4\sqrt{y}+4\)
\(=\left(2x-\sqrt{y}+1\right)^2+3y-2\sqrt{y}+3\)
Ta có \(\left(2x-\sqrt{y}+1\right)^2\ge0,\forall x;y\ge0\)
\(3y-2\sqrt{y}+3=3\left(y-\frac{2}{3}\sqrt{y}+1\right)=3\left[\left(y-2\sqrt{y}\frac{1}{3}+\frac{1}{9}\right)+\frac{8}{9}\right]=3\left(\sqrt{y}-\frac{1}{3}\right)^2+\frac{8}{3}\ge\frac{8}{3}\)
Do đó \(4A\ge\frac{8}{3}\Leftrightarrow A\ge\frac{2}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{y}=\frac{1}{3}\\2x-\sqrt{y}+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{1}{9}\\x=-\frac{1}{3}\end{cases}}}\)
\(\Delta=\left(2m-1\right)^2-4\left(m^2-1\right)=5-4m\ge0\Rightarrow m\le\frac{5}{4}\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m+1\\x_1x_2=m^2-1\end{matrix}\right.\)
Để biểu thức A xác định thì pt đã cho phải có 2 nghiệm không âm
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2>0\\x_1x_2\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-2m+1>0\\m^2-1\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m< \frac{1}{2}\\\left[{}\begin{matrix}m\ge1\\m\le-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m\le-1\)
\(A=\sqrt{x_1}+\sqrt{x_2}>0\)
\(A^2=x_1+x_2+2\sqrt{x_1x_2}=-2m+1+2\sqrt{m^2-1}\)
Do \(m\le-1\Rightarrow\left\{{}\begin{matrix}\sqrt{m^2-1}\ge0\\-2m+1\ge3\end{matrix}\right.\)
\(\Rightarrow A^2\ge3\Rightarrow A\ge\sqrt{3}\)
\(\Rightarrow A_{min}=\sqrt{3}\) khi \(m=-1\)
ĐỪNG SPAM Ạ T_T
🤦🏻♀️🤦🏻♀️🤦🏻♀️🤦🏻♀️