Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}=16\)
\(\Leftrightarrow\sqrt{x+1}=4\)
<=> x + 1 = 16
<=> x = 15 (nhận)
~ ~ ~
\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow\sqrt{x+5}=2\)
<=> x + 5 = 4
<=> x = - 1 (nhận)
a: ĐKXĐ: x-5>=0
=>x>=5
\(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\cdot\sqrt{9x-45}=4\)
=>\(2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)
=>\(2\sqrt{x-5}=4\)
=>x-5=4
=>x=9(nhận)
b: ĐKXĐ: x-1>=0
=>x>=1
\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}=4\)
=>\(\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}=4\)
=>\(-2\sqrt{x-1}=4\)
=>\(\sqrt{x-1}=-2\)(vô lý)
Vậy: Phương trình vô nghiệm
c: ĐKXĐ: x-2>=0
=>x>=2
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\cdot\sqrt{9x-18}+6\cdot\sqrt{\dfrac{x-2}{81}}=-4\)
=>\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\cdot3\sqrt{x-2}+6\cdot\dfrac{\sqrt{x-2}}{9}=-4\)
=>\(\sqrt{x-2}\left(\dfrac{1}{3}-2+\dfrac{2}{3}\right)=-4\)
=>\(-\sqrt{x-2}=-4\)
=>x-2=16
=>x=18(nhận)
d: ĐKXĐ: x+3>=0
=>x>=-3
\(\sqrt{9x+27}+4\sqrt{x+3}-\dfrac{3}{4}\cdot\sqrt{16x+48}=0\)
=>\(3\sqrt{x+3}+4\sqrt{x+3}-\dfrac{3}{4}\cdot4\sqrt{x+3}=0\)
=>\(4\sqrt{x+3}=0\)
=>x+3=0
=>x=-3(nhận)
a) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
= \(2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\)
= \(2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
= \(2\sqrt{x-5}=4\)
= \(\sqrt{x-5}=2\)
= \(\left|x-5\right|=4\)
=> \(x-5=\pm4\)
\(x=\pm4+5\)
\(x=9;x=1\)
Vậy x=9; x=1
a: \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\)
=>4x-4=2x-3
=>2x=1
hay x=1/2
b: \(\Leftrightarrow\sqrt{\dfrac{2x-3}{x-1}}=2\)
=>(2x-3)=4x-4
=>4x-4=2x-3
=>2x=1
hay x=1/2(nhận)
c: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)
=>2x+3=0 hoặc 2x-3=4
=>x=-3/2 hoặc x=7/2
e: \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
=>căn (x-5)=2
=>x-5=4
hay x=9
a, \(\sqrt{9x+9}-4\sqrt{\dfrac{x+1}{4}}=5\) \(x\ge-1\)
\(\Leftrightarrow3\sqrt{x+1}-2\sqrt{x+1}=5\)
\(\Leftrightarrow x+1=25\Leftrightarrow x=24\)
2) "biểu thức"=\(\sqrt{x-5}-4\sqrt{x-5}-\sqrt{x-5}=12\Leftrightarrow4\sqrt{x-5}=12\Leftrightarrow\sqrt{x-5}=3\Leftrightarrow x=14\)
Kl: x=14
3) "biểu thức"=\(4\sqrt{x-1}-3\sqrt{x-1}+\sqrt{x-1}=5\Leftrightarrow2\sqrt{x-1}=5\Leftrightarrow\sqrt{x-1}=\dfrac{5}{2}\Leftrightarrow x=\left(\dfrac{5}{2}\right)^2+1=\dfrac{29}{4}\)
Kl: x=29/4
a)
ĐKXĐ: \(x> \frac{-5}{7}\)
Ta có: \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)
\(\Rightarrow 9x-7=\sqrt{7x+5}.\sqrt{7x+5}=7x+5\)
\(\Rightarrow 2x=12\Rightarrow x=6\) (hoàn toàn thỏa mãn)
Vậy......
b) ĐKXĐ: \(x\geq 5\)
\(\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)
\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}\sqrt{9}.\sqrt{x-5}=4\)
\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow 2\sqrt{x-5}=4\Rightarrow \sqrt{x-5}=2\Rightarrow x-5=2^2=4\Rightarrow x=9\)
(hoàn toàn thỏa mãn)
Vậy..........
c) ĐK: \(x\in \mathbb{R}\)
Đặt \(\sqrt{6x^2-12x+7}=a(a\geq 0)\Rightarrow 6x^2-12x+7=a^2\)
\(\Rightarrow 6(x^2-2x)=a^2-7\Rightarrow x^2-2x=\frac{a^2-7}{6}\)
Khi đó:
\(2x-x^2+\sqrt{6x^2-12x+7}=0\)
\(\Leftrightarrow \frac{7-a^2}{6}+a=0\)
\(\Leftrightarrow 7-a^2+6a=0\)
\(\Leftrightarrow -a(a+1)+7(a+1)=0\Leftrightarrow (a+1)(7-a)=0\)
\(\Rightarrow \left[\begin{matrix} a=-1\\ a=7\end{matrix}\right.\) \(\Rightarrow a=7\) vì \(a\geq 0\)
\(\Rightarrow 6x^2-12x+7=a^2=49\)
\(\Rightarrow 6x^2-12x-42=0\Leftrightarrow x^2-2x-7=0\)
\(\Leftrightarrow (x-1)^2=8\Rightarrow x=1\pm 2\sqrt{2}\)
(đều thỏa mãn)
Vậy..........
a) \(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\) (1)
\(\Leftrightarrow9x-7=\sqrt{\left(7x+5\right)\left(7x+5\right)}\)
\(\Leftrightarrow9x-\sqrt{\left(7x+5\right)\left(7x+5\right)}=7\)
\(\Leftrightarrow9x-\sqrt{\left(7x+5\right)^2}=7\)
\(\Leftrightarrow9x-\left|7x+5\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}9x-\left(7x+5\right)=7\left(đk:7x+5\ge0\right)\\9x-\left[-\left(7x+5\right)\right]=7\left(đk:7x+5< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\left(đk:x\ge-\dfrac{5}{7}\right)\\x=\dfrac{1}{8}\left(đk:x< -\dfrac{5}{7}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x\in\varnothing\end{matrix}\right.\)
\(\Leftrightarrow x=6\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{6\right\}\)
b) \(\sqrt{4x-20}+3\sqrt{\dfrac{x+5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\) (2)
\(\Leftrightarrow\sqrt{4\left(x-5\right)}+3\cdot\dfrac{\sqrt{x+5}}{3}-\dfrac{1}{3}\cdot\sqrt{9\left(x-5\right)}=4\)
\(\Leftrightarrow\sqrt{4}\sqrt{x-5}+\sqrt{x+5}-\dfrac{1}{3}\cdot\sqrt{9}\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x+5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x+5}-\sqrt{x-5}=4\)
\(\Leftrightarrow\sqrt{x-5}+\sqrt{x+5}=4\)
\(\Leftrightarrow\sqrt{x-5}=4-\sqrt{x+5}\)
\(\Leftrightarrow x-5=\left(4-\sqrt{x+5}\right)^2\)
\(\Leftrightarrow x-5=16-8\sqrt{x+5}+x+5\)
\(\Leftrightarrow-5=16-8\sqrt{x+5}+5\)
\(\Leftrightarrow-5=21-8\sqrt{x+5}\)
\(\Leftrightarrow8\sqrt{x+5}=21+5\)
\(\Leftrightarrow8\sqrt{x+5}=26\)
\(\Leftrightarrow\sqrt{x+5}=\dfrac{13}{4}\)
\(\Leftrightarrow x+5=\dfrac{169}{16}\)
\(\Leftrightarrow x=\dfrac{169}{16}-5\)
\(\Leftrightarrow x=\dfrac{89}{16}\)
Vậy tập nghiệm phương trình (2) là \(S=\left\{\dfrac{89}{16}\right\}\)
Nick cũ không đi giải lấy nick mới giải làm gì vậy Tuấn Anh Phan Nguyễn ? :D
2, \(\dfrac{1}{2}\sqrt{x+1}-\dfrac{3}{2}\sqrt{9x+9}+24\sqrt{\dfrac{x+1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x+1}-\dfrac{9}{2}\sqrt{x+1}+3\sqrt{x+1}=-17\)
\(\Leftrightarrow-\sqrt{x+1}=-17\)
\(\Leftrightarrow x+1=289\left(x>0\right)\)
\(\Leftrightarrow x=288\)
Vậy x = 288
3, \(-5x+7\sqrt{x}+12=0\)
\(\Leftrightarrow-5x+12\sqrt{x}-5\sqrt{x}+12=0\)
\(\Leftrightarrow\sqrt{x}\left(12-5\sqrt{x}\right)+\left(12-5\sqrt{x}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(12-5\sqrt{x}\right)=0\)
Do \(\sqrt{x}+1>0\)
\(\Rightarrow12-5\sqrt{x}=0\Leftrightarrow x=\dfrac{144}{25}\)
Vậy...
1. (Đề có chút sai sai nên mình sửa lại nhé) \(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)
(ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{36\left(x-1\right)}-\sqrt{9\left(x-1\right)}-\sqrt{4\left(x-1\right)}=16-\sqrt{x-1}\)
\(\Leftrightarrow6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)
\(\Leftrightarrow2\sqrt{x-1}=16\)
\(\Leftrightarrow\sqrt{x-1}=8\)
\(\Leftrightarrow x-1=64\)
\(\Leftrightarrow x=65\left(tm\right)\)
Vậy pt đã cho có nghiệm x=65.
2. \(\dfrac{1}{2}\sqrt{x+1}-\dfrac{3}{2}\sqrt{9x+9}+24\sqrt{\dfrac{x+1}{64}}=-17\)
(ĐK: \(x\ge-1\))
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x+1}-\dfrac{3}{2}\sqrt{9\left(x+1\right)}+3\sqrt{x+1}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x+1}-\dfrac{9}{2}\sqrt{x+1}+3\sqrt{x+1}=-17\)
\(\Leftrightarrow-\sqrt{x+1}=-17\)
\(\Leftrightarrow\sqrt{x+1}=17\)
\(\Leftrightarrow x+1=289\)
\(\Leftrightarrow x=288\left(tm\right)\)
Vậy \(S=\left\{288\right\}\)
3. \(-5x+7\sqrt{x}+12=0\) (ĐK: \(x\ge0\))
\(\Leftrightarrow5x-7\sqrt{x}-12=0\)
\(\Leftrightarrow5x+5\sqrt{x}-12\sqrt{x}-12=0\)
\(\Leftrightarrow5\sqrt{x}\left(\sqrt{x}+1\right)-12\left(\sqrt{x}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(5\sqrt{x}-12\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+1=0\\5\sqrt{x}-12=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=-1\left(vô.lý\right)\\5\sqrt{x}=12\end{matrix}\right.\Leftrightarrow\sqrt{x}=\dfrac{12}{5}\Leftrightarrow x=\dfrac{144}{25}\left(tm\right)\)
Vậy pt có nghiệm \(x=\dfrac{144}{25}\)
a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=2\left(tm\right)\)
b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))
\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}=16\)
\(\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x+1=16\)
\(\Leftrightarrow x=15\left(tm\right)\)
\(a) \sqrt{4x^2− 9} = 2\sqrt{x + 3}\)
\(ĐK:x\ge\dfrac{3}{2}\)
\(pt\Leftrightarrow4x^2-9=4\left(x+3\right)\)
\(\Leftrightarrow4x^2-9=4x+12\)
\(\Leftrightarrow4x^2-4x-21=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{22}}{2}\left(l\right)\\x=\dfrac{1+\sqrt{22}}{2}\left(tm\right)\end{matrix}\right.\)
\(b)\sqrt{4x-20}+3.\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
\(ĐK:x\ge5\)
\(pt\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\)
\(\Leftrightarrow x-5=4\Leftrightarrow x=9\left(tm\right)\)
\(c)\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27.\sqrt{\dfrac{x-1}{81}}=4\)
ĐK:x>=1
\(pt\Leftrightarrow2\sqrt{x-1}-\sqrt{x-1}+3\sqrt{x-1}=4\)
\(\Leftrightarrow4\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\)
\(d)5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)
\(ĐK:x\ge3\)
\(pt\Leftrightarrow3\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)
\(\Leftrightarrow-\dfrac{5}{3}\sqrt{x-3}-\sqrt{x^2-9}=0\Leftrightarrow\dfrac{5}{3}\sqrt{x-3}+\sqrt{x^2-9}=0\)
\(\Leftrightarrow(\dfrac{5}{3}+\sqrt{x+3})\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}=0\) (vì \(\dfrac{5}{3}+\sqrt{x+3}>0\))
\(\Leftrightarrow x-3=0\Leftrightarrow x=3\left(nhận\right)\)