K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2018

\(A=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}\)

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\right)\)

\(A=1-\frac{1}{2^{99}}< 1\)

Vậy \(A< 1\)

Chúc bạn học tốt ~ 

9 tháng 7 2018

OOOOOOOOOOOOOOOOOOOOOO

13 tháng 10 2015

\(A=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+....+\left(\frac{1}{2}\right)^{99}\)

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{99}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{98}}\)

\(2A-A=1-\frac{1}{2^{99}}\)

=> \(A=1-\frac{1}{2^{99}}<1\)

=> \(A<1\)(Đpcm)

12 tháng 10 2015

Bạn ra bài muộn thế mọi người ngủ cả rồi ai giúp nữa

12 tháng 10 2015

Ta có:

\(A=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}\)

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}-\)

\(2A-A=A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{99}}\)

\(A=1-\frac{1}{2^{99}}<1\left(đpcm\right)\)

23 tháng 9 2017

\(A=\frac{1}{2}+\frac{1}{2^2}+.............+\frac{1}{2^{99}}\)

\(\Leftrightarrow2A=1+\frac{1}{2}+...........+\frac{1}{2^{98}}\)

\(\Leftrightarrow2A-A=\left(1+\frac{1}{2}+.......+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{99}}\right)\)

\(\Leftrightarrow A=1-\frac{1}{2^{99}}\)

\(\Leftrightarrow2^{99}.A=2^{99}-1\left(đpcm\right)\)

16 tháng 8 2018

\(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)

\(2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)

\(2B-B=\left(1+\frac{1}{2}+...+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)\)

\(B=1-\frac{1}{2^{99}}< 1\left(đpcm\right)\)

16 tháng 8 2018

cảm ơn

15 tháng 8 2016

B=\(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}\)

=> 2B=\(2\left[\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}\right]\)

          =\(1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{98}\)

=>2B-B=\(\left[1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{98}\right]-\left[\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{99}\right]\)

=>B=\(1-\left(\frac{1}{2}\right)^{99}< 1\)

=> B<1

10 tháng 10 2015

\(B=\frac{1}{2}+\frac{1^2}{2^2}+\frac{1^3}{2^3}+........+\frac{1^{99}}{2^{99}}\)

\(\Rightarrow B=\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{99}}\)

\(\Rightarrow2B=1+\frac{1}{2}+\frac{1}{2^2}+...........+\frac{1}{2^{98}}\)

\(\Rightarrow2B-B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...........+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...........+\frac{1}{2^{99}}\right)\)

=>B=\(1-\frac{1}{2^{98}}\Rightarrow B<1\)