K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2015

\(B=\frac{1}{2}+\frac{1^2}{2^2}+\frac{1^3}{2^3}+........+\frac{1^{99}}{2^{99}}\)

\(\Rightarrow B=\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{99}}\)

\(\Rightarrow2B=1+\frac{1}{2}+\frac{1}{2^2}+...........+\frac{1}{2^{98}}\)

\(\Rightarrow2B-B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...........+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...........+\frac{1}{2^{99}}\right)\)

=>B=\(1-\frac{1}{2^{98}}\Rightarrow B<1\)

16 tháng 8 2018

\(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)

\(2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)

\(2B-B=\left(1+\frac{1}{2}+...+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)\)

\(B=1-\frac{1}{2^{99}}< 1\left(đpcm\right)\)

16 tháng 8 2018

cảm ơn

8 tháng 9 2015

B = \(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}\)

B = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)

2B = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)

2B - B = \(1-\frac{1}{2^{99}}\)

=> B = \(1-\frac{1}{2^{99}}<1\) 

=> B < 1 (đpcm)

3 tháng 2 2017

ai trả lời đúng k

3 tháng 2 2017

có cách làm nữa nha

20 tháng 9 2016

21=45

Mình chưa học lớp 7

Mình mới học lớp 5 thôi

Xin lỗi nha

30 tháng 1 2017

to cung vay