K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: \(x^4+x^2+1\)

\(=x^4+2x^2+1-x^2\)

\(=\left(x^2+1\right)^2-x^2\)

\(=\left(x^2-x+1\right)\left(x^2+x+1\right)\)

c: \(x^7+x^5+1\)

\(=x^7+x^6+x^5-x^6-x^5-x^4+x^5+x^4+x^3-x^3+1\)

\(=x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)

8 tháng 7 2017

ĐỀ BÀI ???

9 tháng 11 2016

a)\(x^2+7x+6\)

\(=x^2+6x+x+6\)

\(=x\left(x+6\right)+\left(x+6\right)\)

\(=\left(x+1\right)\left(x+6\right)\)

b)\(x^4+2016x^2+2015x+2016\)

\(=x^4+2016x^2+\left(2016x-x\right)+2016\)

\(=\left(x^4-x\right)+\left(2016x^2+2016x+2016\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2016\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2016\right)\)

9 tháng 11 2016

Bài 3:

Từ \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)

\(\Rightarrow a^2+b^2+c^2+3-2a-2b-2c=0\)

\(\Rightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)

\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\) (1)

Ta thấy:\(\begin{cases}\left(a-1\right)^2\ge0\\\left(b-1\right)^2\ge0\\\left(c-1\right)^2\ge0\end{cases}\)

\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) (2)

Từ (1) và (2) \(\Rightarrow\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{cases}\)

\(\Rightarrow\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}\)\(\Rightarrow\begin{cases}a=1\\b=1\\c=1\end{cases}\)

\(\Rightarrow a=b=c=1\Rightarrow H=1\cdot1\cdot1+1^{2014}+1^{2015}+1^{2016}=1+1+1+1=4\)

10 tháng 7 2017

a) = \(4x^4+4x^2+1\)

= \(\left(2x^2+1\right)^2\)

b) = \(4x^4+36x^2+81-36x^2\)

= \(\left(2x^2+9\right)^2\)

c) = \(64x^4+16x^2y^2+y^4-16x^2y^2\)

= \(\left(8x^2+y^2\right)^2\)

d) = \(x^8+4x^4+4-4x^4\)

= \(\left(x^4+2\right)^2\)

e) = \(\left(x^4+2x^2+1\right)-x^2\)

= \(\left(x^2+1\right)^2-x^2\)

= \(\left(x^2+1-x\right).\left(x^2+1+x\right)\)

f) = \(\left(x^7-x\right)+\left(x^5-x^2\right)+\left(x^2+x+1\right)\)

= \(x.\left(x^3-1\right).\left(x^3+1\right)+x^2.\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(\left(x^2+x+1\right).\left(x-1\right).\left(x^4+x\right)+x^2.\left(x-1\right).\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2+x+1\right).\left(x^5-x^4+x^3-1+1\right)\)

6 tháng 9 2017

c/=64x^4+16x^2y^2+y^4-16x^2y^2

=(8x^2+y^2)^2-(4xy)^2

=(8x^2+y^2+4xy)(8x^2+y^2-4xy)

a) Ta có: \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)

\(\Leftrightarrow\frac{7x}{8}-5x+45-\frac{20x+1,5}{6}=0\)

\(\Leftrightarrow\frac{21x}{24}-\frac{120x}{24}+\frac{1080}{24}-\frac{4\left(20x+1,5\right)}{24}=0\)

\(\Leftrightarrow-99x+1080-4\left(20x+1,5\right)=0\)

\(\Leftrightarrow-99x+1080-80x-6=0\)

\(\Leftrightarrow1074-179x=0\)

\(\Leftrightarrow179x=1074\)

hay x=6

Vậy: x=6

b) Ta có: \(4\left(0,5-1,5x\right)=-\frac{5x-6}{3}\)

\(\Leftrightarrow2-6x=\frac{6-5x}{3}\)

\(\Leftrightarrow\frac{3\left(2-6x\right)}{3}-\frac{6-5x}{3}=0\)

\(\Leftrightarrow6-18x-6+5x=0\)

\(\Leftrightarrow-13x=0\)

mà -13≠0

nên x=0

Vậy: x=0

c) Ta có: \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)

\(\Leftrightarrow\frac{6\left(x+4\right)}{30}+\frac{30\left(-x+4\right)}{30}-\frac{10x}{30}+\frac{15\left(x-2\right)}{30}=0\)

\(\Leftrightarrow6\left(x+4\right)+30\left(4-x\right)-10x+15\left(x-2\right)=0\)

\(\Leftrightarrow6x+24+120-30x-10x+15x-30=0\)

\(\Leftrightarrow-19x+114=0\)

\(\Leftrightarrow-19x=-114\)

hay x=6

Vậy: x=6

d) Ta có: \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)

\(\Leftrightarrow\frac{21\left(4x+3\right)}{105}-\frac{15\left(6x-2\right)}{105}-\frac{35\left(5x+4\right)}{105}-\frac{315}{105}=0\)

\(\Leftrightarrow84x+63-90x+30-175x-140-315=0\)

\(\Leftrightarrow-181x-362=0\)

\(\Leftrightarrow-181x=362\)

hay x=-2

Vậy: x=-2

e) Ta có: \(\frac{1}{4}\left(x+3\right)=3-\frac{1}{2}\left(x+1\right)-\frac{1}{3}\left(x+2\right)\)

\(\Leftrightarrow\frac{x+3}{4}=3-\frac{x+1}{2}-\frac{x+2}{3}\)

\(\Leftrightarrow\frac{3\left(x+3\right)}{12}-\frac{36}{12}+\frac{6\left(x+1\right)}{12}+\frac{4\left(x+2\right)}{12}=0\)

\(\Leftrightarrow3x+9-36+6x+6+4x+8=0\)

\(\Leftrightarrow13x-13=0\)

\(\Leftrightarrow13x=13\)

hay x=1

Vậy: x=1

20 tháng 1 2019

a, \(6x^2-5x+3=2x-3x\left(3-2x\right)\)

\(6x^2-5x+3=2x-9x+6x^2\)

\(6x^2-5x+3-6x^2+9x-2x=0\)

\(2x+3=0\)

\(2x=-3\)

\(x=-\dfrac{3}{2}\)

20 tháng 1 2019

b, \(\dfrac{2\left(x-4\right)}{4}-\dfrac{3+2x}{10}=x+\dfrac{1-x}{5}\)

\(\dfrac{20\left(x-4\right)}{4.10}-\dfrac{4\left(3+2x\right)}{4.10}=\dfrac{5x}{5}+\dfrac{1-x}{5}\)

\(\dfrac{20x-80}{40}-\dfrac{12+8x}{40}=\dfrac{5x+1-x}{5}\)

\(\dfrac{20x-80-12-8x}{40}=\dfrac{4x+1}{5}\)

\(\dfrac{12x-92}{40}-\dfrac{4x+1}{5}=0\)

\(\dfrac{12x-92}{40}-\dfrac{8\left(4x+1\right)}{40}=0\)

\(12x-92-8\left(4x+1\right)=0\)

⇔ 12x - 92 - 32x - 8 = 0

⇔ -100 - 20x = 0

⇔ 20x = -100

⇔ x = -100 : 20

⇔ x = -5

27 tháng 10 2017

 

\\(x^3+x^2-x+2\\)

=x3+2x2-x2-2x+x+2

=(x3+2x2)-(x2+2x)+(x+2)

=x2(x+2)-x(x+2)+(x+2)

=(x+2)(x2-x+1)

 

b. \\(x^3-6x^2-x+30\\)

=x3+2x2-8x2-16x+15x+30

=(x3+2x2)-(8x2+16x)+(15x+30x)

=x2(x+2)-8x(x+2)+15(x+2)

=(x+2)(x2-8x+15)

=(x+2)(x2-5x-3x+15)

=(x+2)[(x2-5x)-(3x-15)]

=(x+2)[x(x-5)-3(x-5)]

=(x+2)(x-5)(x-3)

28 tháng 10 2017

h)\(a^6+a^4+a^2b^2+b^4-b^6\)

\(=\left(a^4+a^2b^2+b^4\right)+\left(a^6-b^6\right)\)

\(=\left(a^4+a^2b^2+b^4\right)+\left[\left(a^2\right)^3-\left(b^2\right)^3\right]\)

\(=\left(a^4+a^2b^2+b^4\right)+\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\)

\(=\left(a^4+a^2b^2+b^4\right)\left(1+a^2-b^2\right)\)