Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (7x - 11)3 = 25.52 + 200
(7x - 11)3 = 32.25 + 200
(7x - 11)3 = 800 + 200
(7x - 11)3 = 1000 = 103
=> 7x - 11 = 10
=> 7x = 10 + 11 = 21
=> x = 21 : 7 = 3
b) \(1\frac{1}{3}x+16\frac{3}{4}=-13,25\)
=> \(\frac{4}{3}x+\frac{67}{4}=-\frac{53}{4}\)
=> \(\frac{4}{3}x=-\frac{53}{4}-\frac{67}{4}\)
=> \(\frac{4}{3}x=-30\)
=> \(x=-30:\frac{4}{3}\)
=> \(x=-30.\frac{3}{4}=-\frac{45}{2}\)
\(2.THPT\)
\(A=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{98.99}+\frac{9}{99.100}\)
\(A=9\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(A=9\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=9\left(1-\frac{1}{100}\right)\)
\(A=9.\frac{99}{100}\)
\(A=\frac{891}{100}\)
\(B=\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{93.95}\)
\(B=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{93}-\frac{1}{95}\)
\(B=\frac{1}{5}-\frac{1}{95}\)
\(B=\frac{18}{95}\)
\(D=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(D=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\)
\(D=\frac{1}{2}-\frac{1}{28}\)
\(D=\frac{13}{28}\)
\(a,\left(7x-11\right)^3=2^5.5^2+200.\)
\(\left(7x+11\right)^3=32.25+200.\)
\(\left(7x+11\right)^3=800+200.\)
\(\left(7x-11\right)^3=1000.\)
\(\left(7x-11\right)^3=10^3.\)
\(\Rightarrow7x-11=10.\)
\(\Rightarrow x=\left(10+11\right):3=7\in Z.\)
Vậy.....
\(b,3^x+25=26.2^2+2.3^0.\)
\(3^x+25=26.4+2.\)
\(3^x+25=104+2.\)
\(3^x+25=106.\)
\(3^x=106-25.\)
\(3^x=81.\)
\(3^x=3^4\Rightarrow x=4\in Z.\)
Vậy.....
\(c,2^x+3.2=64.\)(có vấn đề).
\(d,5^{x+1}+5^x=750.\)
\(5^x.5^1+5^x+1=750.\)
\(5^x\left(5^1+1\right)=750.\)
\(5^x\left(5+1\right)=750.\)
\(5^x.6=750.\)
\(5^x=750:6.\)
\(5^x=125.\)
\(5^x=5^3\Rightarrow x=3\in Z.\)
Vậy.....
\(e,x^{15}=x.\)
\(\Rightarrow x\left(x^{14}-1\right)=0\Rightarrow\left\{{}\begin{matrix}x=0\\x=1\end{matrix}\right..\)
\(f,\left(x-5\right)^4=\left(x-5\right)^6.\)
\(\Leftrightarrow\left(x-5\right)^4-\left(x-5^6\right)=0.\)
\(\Leftrightarrow\left(x-5\right)^4\left[1-\left(x-5\right)^2\right]=0.\)
\(\Leftrightarrow\left(x-5\right)^4\left(1-x+5\right)\left(1+x-5\right)=0.\)
\(\Leftrightarrow\left(x-5\right)^4\left(6-x\right)\left(x-4\right)=0.\)
\(\Leftrightarrow\left(x-5\right)^4=0\Rightarrow x-5=0\Rightarrow x=5\in Z.\)
\(6-x=0\Rightarrow x=6\in Z.\)
\(x-4=0\Rightarrow x=4\in Z.\)
Vậy.....
\(a)2x^2-98=0\)
\(2x^2=0+98\)
\(2x^2=98\)
\(x^2=98:2\)
\(x^2=49\)
\(\rightarrow x^2=7^2\)
\(\rightarrow x=7\)
Vậy x = 7
\(a,\left(7x-11\right)^3=2^5.5^2+200\)
\(\Leftrightarrow\left(7x-11\right)^3=32.25+200\)
\(\Leftrightarrow\left(7x-11\right)^3=800+200\)
\(\Leftrightarrow\left(7x-11\right)^3=1000\)
\(\Leftrightarrow\left(7x-11\right)^3=10^3\)
\(\Rightarrow7x-11=10\)
\(\Rightarrow7x=21\)
\(\Rightarrow x=3\)
\(b,3^2.x^2-2^2.x^2=5^5-\left(255:51\right).11\)
\(\Rightarrow x^2\left(3^2-2^2\right)=3125-5.11\)
\(\Rightarrow x^2\left(9-4\right)=3125-55\)
\(\Rightarrow5x^2=2970\)
\(\Rightarrow x^2=2970:5\)
\(\Rightarrow x^2=594\)
\(\Rightarrow x=3\sqrt{66}\)
\(a,3\frac{1}{3}x+16\frac{3}{4}=-13,25\)
\(\frac{10}{3}x+\frac{67}{4}=-13,25\)
\(\frac{10}{3}x=-13,25-\frac{67}{4}\)
\(\frac{10}{3}x=-30\)
\(x=\left(-30\right):\frac{10}{3}\)
\(x=-9\)
\(b,\left(7x-11\right)^3=2^5.5^2+200\)
\(\left(7x-11\right)^3=32.25+200\)
\(\left(7x-11\right)^3=1000\)
\(\Rightarrow\left(7x-11\right)^3=10^3\)
\(\Rightarrow7x-11=10\)
\(\Rightarrow7x=10+11\)
\(\Rightarrow7x=21\)
\(\Rightarrow x=3\)
A) (10/3)x+67/4=-53/4<=>(10/3)x=-53/4-67/4=-30<=>x=-30:(10/3)=-9 b) (7x-11)^3=1000=10^3<=>7x-11=10=>7x=21=>x=3