Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
a) 2195 = (23)65 = 865 ; 3130 = (32)65 = 965
Mà 8 < 9 nên 865 < 965 => 2195 < 3130
b) |3,4 - x| > 0 với mọi x => - |3,4 - x| < 0 với mọi x => 0,5 - |3,4 - x| < 0,5
=> GTLN của A là 0,5 tại x = 3,4
Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi
a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)
Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)
\(\Leftrightarrow A\ge-1\)
Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1
Vậy Giá trị nhỏ nhất của A là -1
b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1
1/ \(A=3\left|2x-1\right|-5\)
Ta có: \(\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|-5\ge-5\)
Để A nhỏ nhất thì \(3\left|2x-1\right|-5\)nhỏ nhất
Vậy \(Min_A=-5\)
a) Vì (x+2)2 >/ 0
=> \(A\le\frac{3}{0+4}=\frac{3}{4}\Rightarrow Amax=\frac{3}{4}\Leftrightarrow x+2=0\Rightarrow x=-2\)
b) Vì \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)
\(B\ge0+0+1=1\Rightarrow Bmin=1\Leftrightarrow\int^{x+1=0}_{y+3=0}\Rightarrow\int^{x=-1}_{y=-3}\)
a) Ta có: \(2^{195}=\left(2^3\right)^{65}=8^{65}\)
\(3^{130}=\left(3^2\right)^{65}=9^{65}\)
Vì \(8^{65}< 9^{65}\Rightarrow2^{195}< 3^{130}\)
b) Vì \(\left|3,4-x\right|\ge0\forall x\)
\(\Rightarrow-\left|3,4-x\right|\le0\forall x\)
\(\Rightarrow0,5-\left|3,4-x\right|\le0,5\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=3,4\)
Vậy \(MAX_A=0,5\Leftrightarrow x=3,4\)