Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A = 5 + 52 + 53 +....+ 5100
⇒�=(5+52)+(53+54)+...+(599+5100)⇒A=(5+52)+(53+54)+...+(599+5100)
⇒�=5(1+5)+53.(1+5)+...+599.(1+5)⇒A=5(1+5)+53.(1+5)+...+599.(1+5)
⇒�=5.6+53.6+...+599.6⇒A=5.6+53.6+...+599.6
�=6.(5+53+...+599)A=6.(5+53+...+599) chia hết cho 6.
Vì A chia hết cho 6 nên A là hợp số.
A =5 + 52 + 53 + ... + 5100
A ⋮ 1; 5 ; A (A > 5)
Vậy A là hợp số
b; A = 5 + 52 + 53 + ... + 5100
A = 5 + 52(1 + 5 + 52 + ... + 598)
⇒ A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó.
Gia sử:A là số chính phương
Ta có:A=3.(1+3+32+..+329)
=>A chia hết cho 3
=>A chia hết cho 32 (Vì A là số chính phương)
=>1+3+32+..+329 chia hết cho 3 (vô lí)
Vậy A không phải là số chính phương
A=(3^31-3)/2 chia hết cho 3 nhưng không chia hết cho 9 nên A không là số chính phương
a) \(2^2.3^4.5^2=2^2.9^2.5^2=\left(2.9.5\right)^2=90^2\) là bình phương của số 90
b) \(2^2.3^2.5^{15}=2^2.3^2.5^{14}.5=2^2.3^2.78125^2.5=\left(2.3.78125\right)^2.5\)
Vì 5 \(\ne\) (2. 3. 78125) nên (2.3.78125)2.5 không thể là bình phương của một số
a) \(2^2.3^4.5^2=2^2.9^2.5^2\)
Ta có : \(2^2.2^9.5^2\) đều là bình phương của nhiều số.
Mà : \(2^2.9^2.5^2\) = 8100 = \(90^2\)
b) \(2^2.3^2.5^{15}\) không phải là bình phương của một số do 515 không phải bình phương của số nào