Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)m(2x-m)\(\ge\)2(x-m)+1
<=>2mx-m2-2x+2m-1\(\ge\)0
<=>2(m-1)x-m2+2m-1\(\ge\)0
*)m=1 BPT trở thành
0.x-1+2-1\(\ge\)0
<=>0\(\ge\)0(đúng)
*)m khác 1
=>2(m-1)x-(m-1)2\(\ge\)0
<=>2(m-1)x\(\ge\)(m-1)2
<=>x\(\ge\)\(\dfrac{m-1}{2}\)
Vậy m =1 thì BPT nghiệm đúng với mọi x
m khác 1 thì x\(\ge\)\(\dfrac{m-1}{2}\)
b)m(2-x)+(m-1)2>2x+5
<=>2m-mx+m2-2m+1-2x-5>0
<=>-(m+2)x+m2-4>0
<=>-(m+2)x>-(m-2)(m+2)
<=>(m+2)x<(m-2)(m+2)
*)Nếu m=-2 BPT trở thành
0.x<0
<=>0<0(vô lí)
*)Nếu m khác -2
BPT tương đương x<m-2
Vậy m=-2 BPT vô nghiệm
m khác -2 thì x<m-2
a) \(3\left(4x-1\right)-2x\left(5x+2\right)>8x-2\)
\(\Leftrightarrow12x-3-10x^2-4x>8x-2\)
\(\Leftrightarrow-10x^2>5\)
\(\Leftrightarrow x^2< \dfrac{-1}{2}\)(vô lí)
Vậy bất phương trình đã cho vô nghiệm.
h)
\(\dfrac{x+5}{x+7}-1>0\)
\(\Leftrightarrow\dfrac{x+5}{x+7}-\dfrac{x+7}{x+7}>0\)
\(\Leftrightarrow\dfrac{x+5-x-7}{x+7}>0\)
\(\Leftrightarrow\dfrac{-2}{x+7}>0\)
\(\Leftrightarrow x+7< 0\)
\(\Leftrightarrow x< -7\)
g)
\(\dfrac{4-x}{3x+5}\ge0\)
* TH1:
\(4-x\ge0\) và \(3x+5>0\)
\(\Leftrightarrow x\le4\) và \(x>\dfrac{-5}{3}\)
* TH2:
\(4-x\le0\) và \(3x+5< 0\)
\(\Leftrightarrow x\ge4\) và \(x< \dfrac{-5}{3}\) ( loại)
Vậy: \(-\dfrac{5}{3}< x\le4\)
a: 3(x-1)-2(x+1)=-3
=>3x-3-2x-2=-3
=>x-5=-3
=>x=2
Thay x=2 vào pt(1), ta được:
\(2m^2+m-6=0\)
=>2m2+4m-3m-6=0
=>(m+2)(2m-3)=0
=>m=-2 hoặc m=3/2
c: \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
Bất phương trình tương đương với:
\(\left(m+2\right)x< m^2-4\)(1)
Với \(m+2=0\Leftrightarrow m=-2\)(1) tương đương với:
\(0x< 0\)(vô nghiệm)
Với \(m+2< 0\Leftrightarrow m< -2\)(1) tương đương với:
\(x>\frac{m^2-4}{m+2}=m-2\)
Với \(m+2>0\Leftrightarrow m>-2\) (1) tương đương với:
\(x< \frac{m^2-4}{m+2}=m-2\)
=>x+1>x-2 hoặc x+1<-x+2
=>1>-2(luôn đúng) hoặc 2x<1
=>x<1/2
a, \(2mx-m^2\ge2x-2m+1\Leftrightarrow2x\left(m-1\right)\ge\left(m-1\right)^2\)
Nếu \(m-1\ge0\Leftrightarrow m\ge1\)thì
\(\Leftrightarrow2x\ge m-1\Leftrightarrow x\ge\frac{m-1}{2}\)
Nếu \(m< 1\)thì :
\(\Leftrightarrow2x\le m-1\Leftrightarrow x\le\frac{m-1}{2}\)
b,\(\Leftrightarrow2m-mx+m^2-2m+1>2x+5\Leftrightarrow m^2-4>\left(m+2\right)x\)
Nếu \(\left(m-2\right)\left(m+2\right)\ge0\Leftrightarrow\orbr{\begin{cases}m\le-2\\m\ge2\end{cases}}\)thì
\(\Leftrightarrow x< m-2\)
Nếu \(m^2-4< 0\Leftrightarrow-2< m< 2\)thì
\(\Leftrightarrow x>m-2\)
c, \(\Leftrightarrow\left(m^2-m-1-3+m\right)x>5m\)
\(\Leftrightarrow\left(m^2-4\right)x>5m\)
Nếu \(m^2-4\ge0\Leftrightarrow\orbr{\begin{cases}m\le-2\\m\ge2\end{cases}}\)thì
\(x>\frac{5m}{m^2-4}\)
Nếu \(m^2-4< 0\Leftrightarrow-2< m< 2\)thì
\(x< \frac{5m}{m^2-4}\)