Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1 + ( 3 + 32 + 33 ) + ( 34 + 35 + 36 ) + ... + ( 398 + 399 + 3100 )
= 1 + 3 ( 1 + 3 + 32 ) + 34 ( 1 + 3 + 32 ) + .... + 398 ( 1 + 3 + 32 )
= 1 + 3 ( 1 + 3 + 9 ) + 34 ( 1 + 3 + 9 ) + ..... + 398 ( 1 + 3 + 9 )
= 1 + 3.13 + 34 .13 + .... + 398.13
= 1 + 13 ( 3 + 34 + ... + 398 )
Vì 13 ( 3 + 34 + ... + 398 ) chia hét cho 13 => 1 + 13 ( 3 + 34 + ... + 398 ) chia 13 dư 1
hay S chia 13 dư 1
Sao cô giáo minh lại bảo số dư là 4 cơ:
ta có 1+3+3\(^2\)+3\(^3\)+...+3\(^{100}\)
S=(1+3)+(3\(^2\)+3\(^3\))+..+(3\(^{99}\)+3\(^{100}\))
=4.13.(3\(^2\)+...+3\(^{98}\))
Vậy S chia cho 13 dư4
\(B=3^2+3^3+3^6+.....+3^{60}\)
\(\Rightarrow3^2B=3^4+3^6+3^8+.....+3^{62}\)
\(\Rightarrow9B-B=\left(3^4+3^6+.....+3^{62}\right)-\left(3^2+3^4+....+3^{60}\right)\)
\(\Rightarrow8B=3^{62}-3^2\)
\(\Rightarrow B=\frac{3^{62}-3^2}{8}\)
Ta có: \(a+b=3\left(a-b\right)\Leftrightarrow2a=4b\Leftrightarrow a=2b\) (b khác 0)
Thay vào \(a+b=2\frac{a}{b}\) ta được: \(2b+b=2\cdot\frac{2b}{b}\)
\(\Leftrightarrow3b=4\Rightarrow b=\frac{4}{3}\Leftrightarrow a=\frac{8}{3}\)
Vậy a = 8/3 , b = 4/3
Do các số này không theo thứ thự mà bắt đầu từ 32 , nó mới có thứ tự
Vậy ta chỉ tính từ 32 đến 32006
Số số hạng của tổng là :
( 32006 - 32 ) : 1 + 1 = 31975 ( số số hạng )
Tổng cần tìm là :
( 32006 + 32 ) . 31975 : 2 = 512207525
Do 1 còn ngoài tổng nên :
512207525 + 1 = 512207526
Số dư khi S chia cho 13 :
512207526 : 13 = 39400578 ( dư 12 )
Đáp số : 12
B = 3 + 32 + 33 + 34 + ... + 3100
B = 31 + 32 + 33 + 34+... + 3100
Xét dãy số: 1; 2; 3; 4; ...; 100 dãy số này là dãy số cách đều với khoảng cách là:
2 - 1 = 1
Số số hạng của dãy số trên là: (100 - 1) : 1 + 1 = 100.
Vậy B có 100 hạng tử, vì 100 : 3 = 33 dư 1
Nên nhóm 3 hạng tử liên tiếp của B lại thành một nhóm ta được
B = (3100 + 399 + 398) + (397 + 396 + 395) + ... + (34 + 33 + 32) + 3
B = 398.(32 + 3 + 1) + 395.(32 + 3 + 1) + ... + 32.( 32 + 3 + 1) + 3
B = 398. 13 + 395.13 + ... + 32.13 + 3
B = 13.(398 + 395 + ... + 32) + 3
Vì: 13. (398 + 395 + ... + 32) ⋮ 13
⇒ B : 13 dư 3