K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2016

phải (-3)^y chứ

14 tháng 8 2018

Ta có: \(2^{x+1}.\left(-3\right)^y=12^x\)

\(\Rightarrow2^{x+1}.\left(-3\right)^y=\left(3.4\right)^x\)

\(\Rightarrow2^{x+1}.\left(-3\right)^y=3^x.4^x\)

\(\Rightarrow2^{x+1}.\left(-3\right)^y=3^x.2^{2x}\)

\(\Rightarrow2^{x+1}.\left(-1\right)^y.3^y=3^x.2^{2x}\)

\(\Rightarrow\left[{}\begin{matrix}x+1=2x\\x=y\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=y=1\end{matrix}\right.\)

Vậy x=1 , y=1

15 tháng 2 2018

Đáp án C

G T ⇔ x 2 + y − 3 x + y 2 − 4 y + 4 = 0 y 2 + x − 4 y + x 2 − 3 x + 4 = 0

có nghiệm  ⇔ Δ x ≥ 0 Δ y ≥ 0 ⇔ 0 ≤ x ≤ 4 3 1 ≤ y ≤ 7 3

Và:

x y = 3 x + 4 y − x 2 − y 2 − 4 ⇒ P = 3 x 3 + 18 x 2 + 45 x − 8 ⏟ f x + − 3 y 3 + 3 y 2 + 8 y ⏟ g y

 Xét hàm số f x = 3 x 3 + 18 x 2 + 45 x − 8 trên  0 ; 4 3 ⇒ max 0 ; 4 3 f x = f 4 3 = 820 9

Xét hàm số g x = − 3 y 3 + 3 y 2 + 8 y trên  1 ; 7 3 ⇒ max 1 ; 7 3 g x = f 4 3 = 80 9

Vật P ≤ max 0 ; 4 3 f x + max 1 ; 7 3 g x = 100

Dấu “=” xảy ra khi  x = y = 4 3

19 tháng 4 2016

sai đề

 

20 tháng 4 2016

sai z dag chi z

2 tháng 8 2019

21 tháng 2 2016

\(\begin{cases}\sqrt{xy}+\frac{1}{\sqrt{xy}}=\frac{5}{2}\\\sqrt{x}+\sqrt{y}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=\frac{9}{2}\end{cases}\)

<=>\(\begin{cases}xy+1=\frac{5\sqrt{xy}}{2}\\\sqrt{xy}.\left(\sqrt{x}+\sqrt{y}\right)+\sqrt{x}+\sqrt{y}=\frac{9\sqrt{xy}}{2}\end{cases}\)

Đặt P=\(\sqrt{xy}\);S=\(\sqrt{x}+\sqrt{y}\)(S2\(\ge\)4P)

Ta có HPT: \(\begin{cases}P^2+1=\frac{5P}{2}\\S.P+P=\frac{9P}{2}\end{cases}\)

Tới đây dễ tự làm 

21 tháng 2 2016

Khử mẫu đặt S P

15 tháng 5 2017

Theo hệ quả của bất đẳng thức Cauchy - Schwarz

\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\)

\(x^2+y^2+z^2\le3\)

\(\Rightarrow xy+yz+xz\le3\)

Ta có \(P=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\)

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow P\ge\dfrac{\left(1+1+1\right)^2}{xy+1+yz+1+xz+1}=\dfrac{9}{xy+yz+xz+3}\) (1)

Ta có \(xy+yz+xz\le3\)

\(\Rightarrow xy+yz+xz+3\le6\)

\(\Rightarrow\dfrac{9}{xy+yz+xz+3}\ge\dfrac{9}{6}=\dfrac{3}{2}\) (2)

Từ (1) và (2)

\(\Rightarrow P\ge\dfrac{3}{2}\)

Vậy \(P_{min}=\dfrac{3}{2}\)

Dấu " = " xảy ra khi \(x=y=z=1\)

14 tháng 4 2016

|x-2|.y+|x-2|-17=0

<=>|x-2|.y+|x-2|=17

<=>|x-2|.(y+1)=17=1.17=17.1=(-1).(-17)=(-17).(-1)

Ta có: |x-2| và y+1 là ước của 17

Chú ý rằng |x-2| >= 0 với mọi x nên |x-2| là ước dương của 17,từ đó suy ra y+1 cũng là ước dương của 17

=>|x-2|.(y+1)=1.17=17.1

+)|x-2|=1 và y+1=17

=>x-2=-1 hoặc x-2=1 và y+1=17

=>x=1 hoặc x=3 và y=16

+)|x-2|=17 và y+1=1

=>x-2=-17 hoặc x-2=17 và y+1=1

=>x=-15 hoặc x=19 và y=0

Vậy ..........................

 

7/  Em sửa lại đề ạ 

Cho hai số thực dương a, b thỏa mãn a+b=4ab

Chứng minh rằng  \(\frac{a}{4b^2+1}+\frac{b}{4a^2+1}\ge\frac{1}{2}\)

Đổi biến \(\left(a,b\right)\rightarrow\left(\frac{1}{x},\frac{1}{y}\right)\)

Từ giả thiết => x+y=4

Ta có: BĐT cần CM tương đương với:

\(\frac{\frac{1}{x}}{\frac{4}{y^2}+1}+\frac{\frac{1}{y}}{\frac{4}{x^2}+1}\ge\frac{1}{2}\)\(\Leftrightarrow\frac{y^2}{x\left(4+y^2\right)}+\frac{x^2}{y\left(4+x^2\right)}\ge\frac{1}{2}\left(1\right)\)

Áp dụng BĐT Schwarz, ta có:
\(\frac{x^2}{y\left(4+x^2\right)}\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)+xy^2+x^2y}=\frac{16}{16+xy^2+x^2y}\)

Ta chỉ cần chứng minh:

\(xy^2+x^2y\le16\Leftrightarrow xy^2+x^2y\le\frac{1}{4}\left(x+y\right)^3\)

\(\Leftrightarrow xy^2+x^2y\le x^3+y^3\)(luôn đúng)

Do đó (1) đúng. BĐT được chứng minh. Dấu "=" xảy ra khi x=y=2⇔a=b=\(\frac{1}{2}\)

6. (chuyên Hòa Bình)

Cho các số dương x, y, z thỏa mãn: xy+zx+4yz=32

Tìm giá trị nhỏ nhất của\(P=x^2+16y^2+16z^2\)

Áp dụng bất đẳng thức Cauchy cho  ba số dương  x,y,z ta có

\(\hept{\begin{cases}8y^2+\frac{1}{2}x^2\ge2\sqrt{8y^2.\frac{1}{2}x^2}=4xy\\8z^2+\frac{1}{2}x^2\ge2\sqrt{8z^2.\frac{1}{2}x^2}=4xz\\8y^2+8z^2\ge2\sqrt{8y^2.8z^2}=16yz\end{cases}}\)

Cộng từng vế của ba bđt trên ta có

\(P\ge4\left(xy+xz+4yz\right)=4.32=128\)