Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x2+6)(x2-64)=0
\(\Rightarrow\orbr{\begin{cases}x^2+6=0\\x^2-64=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=-6\\x^2=64\end{cases}}\Rightarrow\orbr{\begin{cases}x=\Phi\\x=8\end{cases}}\)
Vậy x=8
\(\left(x-3\right)\left(x+5\right)+\left(x^2-25\right)=0\)\(0\Rightarrow\left(x-3\right)\left(x+5\right)+\left(x-5\right)\left(x+5\right)=0\)
\(\Rightarrow\)\(\left(x+5\right)\left(x-3+x-5\right)=0\)\(\Rightarrow\)\(\left(x+5\right)\left(2x-8\right)=0\)
\(\Rightarrow\)\(\orbr{\begin{cases}x+5=0\\2x-8=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-5\\x=4\end{cases}}\)
a. \(\dfrac{1}{3}.\left(x-1\right)+\dfrac{2}{5}.\left(x+1\right)=0\)
=> \(\dfrac{1}{3}x-\dfrac{1}{3}+\dfrac{2}{5}x+\dfrac{2}{5}=0\)
=> \(\dfrac{1}{3}x+\dfrac{2}{5}x=0+\dfrac{1}{3}-\dfrac{2}{5}\)
=> \(\dfrac{11}{15}x=\dfrac{-1}{15}\)
=> \(x=\dfrac{-1}{11}\)
Đây toán 8 mà? :v
a,\(\dfrac{1}{5}x\left(x-1\right)+\dfrac{2}{5}x\left(x+1\right)=0\)
\(\Leftrightarrow5x\left(x-1\right)+6x\left(x+1\right)=0\)
\(\Leftrightarrow\left[5\left(x-1\right)+6x\left(x+1\right)\right]x=0\)
\(\Leftrightarrow\left(5x-5+6x+6\right)x=0\)
\(\Leftrightarrow\left(11+1\right)x=0\)
\(\Leftrightarrow11x+1=0;x=0\)
\(\Leftrightarrow x=-\dfrac{1}{11};x=0\)
Vậy....
Để D nhỏ nhất thì I x^2 + 5 I phải có kết quả dương nhỏ nhất .
=> x = 0
I y + 4 I đạt giá trị nhỏ nhất khi y = -4
Vậy GTNN của biểu thức trên là 5
E đạt giá trị nhỏ nhất khi x = 1
y - 4 có giá trị nhỏ nhất là 0 nên y = -4
Vậy GTNN của biểu thức trên là 5
Ta có: E=|x-1|+|x-2|+|x-3|+|x-4|=(|x-1|+|3-x|)+(|x-2|+|4-x|) \(\ge\) 2+2 = 4
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)\left(3-x\right)\ge0\\\left(x-2\right)\left(4-x\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}1\le x\le3\\2\le x\le4\end{cases}\Leftrightarrow}2\le x\le3}\)
Vậy MinE = 4 khi \(2\le x\le3\)
\(\left(3x-1\right)\left(\frac{2}{3}x+\frac{1}{5}\right)\le0\)
\(\Rightarrow\left[\begin{array}{nghiempt}3x-1\le0\\\frac{2}{3}x+\frac{1}{5}\le0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}3x\le1\\\frac{2}{3}x\le-\frac{1}{5}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x\le\frac{1}{3}\\x\le-\frac{3}{10}\end{array}\right.\)
\(\Rightarrow x\le\frac{1}{3}\left(tm\right)\)
Vậy để \(\left(3x-1\right)\left(\frac{2}{3}x+\frac{1}{5}\right)\le0\) thì \(x\le\frac{1}{3}\)
\(\left(x+6\right)^{x+2}.\left[1-\left(x+6\right)^{10}\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x+6\right)^{x+2}=0\\1-\left(x+6\right)^{10}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x+6=0\\x+6=1\end{cases}hoac}x+6=-1\)
\(\Rightarrow\orbr{\begin{cases}x=-6\\x=-5\end{cases}hoac}x=-7\)
vậy x=-5, x=-6 hay x=-7
2, ta có:
\(\left|4x+2\right|\ge0\)
\(\left(y+2\right)^{2018}\ge0\)
\(\Rightarrow\left|4x+2\right|+\left(y+2\right)^{2018}+2019\ge2019\)
dấu "=" xảy ra khi \(\hept{\begin{cases}\left|4x+2\right|=0\\\left(y+2\right)^{2018}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-2\end{cases}}\)
vậy GTNN của p = 2019 khi và chỉ khi \(x=-\frac{1}{2},y=-2\)
Ta có: \(\left|3x+1\right|+\left|3x-5\right|=\left|3x+1\right|+\left|5-3x\right|\ge\left|3x+1+5-3x\right|=6\)(1)
\(\frac{12}{\left(y+3\right)^2+2}\le\frac{12}{2}=6\)(2)
\(\left(1\right);\left(2\right)\Rightarrow VT\ge VP."="\Leftrightarrow\hept{\begin{cases}-\frac{1}{3}\le x\le\frac{5}{3}\\y=-3\end{cases}}\)
nghe rồi ko hay
( x2 - 5 ) . ( x2 - 1000 ) = 0
\(\Rightarrow\orbr{\begin{cases}x^2-5=0\\x^2-1000=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2=5\\x^2=1000\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\mp\sqrt{5}\\x=\mp\sqrt{1000}\end{cases}}\)